ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ノルム

索引 ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

173 関係: Apache Commons Math加群の直和加速度の比較劣加法性半双線型形式半ノルム単位ベクトル単位円板単位球面可微分多様体双柱多元数実数空間実数直線局所可積分函数局所凸位相ベクトル空間中線定理主成分分析三角不等式一般化モーメント法平均幾何学二次形式代数的数付値弱位相弱位相 (極位相)強位相 (極位相)強圧的函数位相偏移変調位相的場の理論位相群の群環作用素作用素ノルム作用素環論ミンコフスキー汎関数ノルム多元体ノルム代数ノルム保存型擬ポテンシャルノルム化可能空間ノルム線型空間ハーン–バナッハの定理ハッセ=ダベンポートの関係式ハウスホルダー変換バナッハ空間バナッハ環ポテンシャル論ユークリッド環ユークリッド距離ユニタリ群...リー・トロッター積公式リースの表現定理リース=フィッシャーの定理リプシッツ連続リアプノフ指数レイリー商ローレンツ空間ローレンツ群ワイエルシュトラスのM判定法ヴィラソロ代数ボホナー空間ヘルダー条件ブロッホ空間プランクの法則ヒルベルト空間ピカールの逐次近似法テンソルフランク・ウルフのアルゴリズムフリードリヒの不等式フレシェ空間フーリエ級数の収束フォン・ノイマンの不等式フォン・ノイマン環ドット積ベルグマン空間ベクトルのなす角ベクトル空間ベクトル測度分解型複素数分離超平面定理アポロニウスの問題アルカリ岩エルゴード定理カレント (数学)ガウス・ニュートン法ガウス軌道ケーリー=ディクソンの構成法ゲルファント=ナイマルクの定理コーシー=シュワルツの不等式シュレーディンガー描像シュレーディンガー方程式シュワルツ超函数シフト作用素スレイター行列式スカラー (数学)ソボレフ空間内積凸錐商線型空間全微分八元数勾配 (ベクトル解析)四元数B*-環Basic Linear Algebra SubprogramsC*-環球体球面空間 (数学)立体符号 (数学)符号付測度線形予測法絶対収束絶対値点と直線の距離特殊相対性理論直交関数列直積 (ベクトル)随伴作用素面積分行列行列ノルム複素測度規格化解析学角速度角速度の比較計量ベクトル空間超球の体積超距離空間距離微分距離函数跡 (線型代数学)近似による誤差量子力学の数学的定式化量子回帰定理自乗可積分函数自然対数長さ零ベクトル零写像電荷密度速さの比較連続 (数学)G.719GNS表現GNS構成法H∞制御理論ISO 80000-2Lp空間LTIシステム理論概周期函数正則化正規直交基底正規直交系法線ベクトル準ノルム準ニュートン法有界変動函数有界作用素有界入力有界出力安定性有界級数空間有界逆写像定理有限要素法最小二乗法方向微分方正函数擬距離空間放射基底関数放射非有界函数数学記号の表数列空間 インデックスを展開 (123 もっと) »

Apache Commons Math

Apache Commons Math(アパッチ・コモンズ・マス)は、ApacheのトッププロジェクトであるApache CommonsにあるApache Commons#Commons Properに属する自己完結した数学と統計学の軽量コンポーネントである。 統計解析、複素数演算、分数演算、行列演算、固有値問題、QR法、数値積分、多変量解析、差分法などのライブラリを持つ。.

新しい!!: ノルムとApache Commons Math · 続きを見る »

加群の直和

抽象代数学における直和(ちょくわ、direct sum)は、いくつかの加群を一つにまとめて新しい大きな加群にする構成である。加群の直和は、与えられた加群を「不必要な」制約なしに部分加群として含む最小の加群であり、余積の例である。双対概念であると対照をなす。 この構成の最もよく知られた例はベクトル空間(体上の加群)やアーベル群(整数環 Z 上の加群)を考えるときに起こる。構成はバナッハ空間やヒルベルト空間をカバーするように拡張することもできる。.

新しい!!: ノルムと加群の直和 · 続きを見る »

加速度の比較

本項では、加速度(かそくど)の大きさを比較(ひかく)できるよう、昇順に表にする。 加速度はベクトル量であるが、ここではその大きさを扱う。.

新しい!!: ノルムと加速度の比較 · 続きを見る »

劣加法性

数学の分野における劣加法性(れつかほうせい、)とは、大まかに言うと、定義域に含まれる二つの元の和についての関数の値が、それら各元についての関数の値の和よりも常に小さいか等しい、という性質のことを言う。数学の様々な研究領域、特にノルムや平方根などに関する領域において、数多くの劣加法的関数の例が知られている。加法的関数は、劣加法的関数の特別な場合である。.

新しい!!: ノルムと劣加法性 · 続きを見る »

半双線型形式

数学の特に線型代数学における 上の半双線型形式(はんそうせんけいけいしき、sesquilinear form; 準双線型形式。)とは、写像 で一方の引数に関して線型かつ他方の引数に関してとなるようなものを言う。名称は「1 と 1/2」を意味するラテン語の ''sesqui-'' に由来する。これと対照して、双線型形式は両引数に関して線型であることを意味するが、特に専ら複素数体上の空間を扱うような多くの文献において、半双線型形式の意味で「双線型形式」と呼ぶものがある。 動機付けとなる例は複素ベクトル空間上の内積で、これは双線型ではないがその代わり半双線型である。後述の幾何学的動機付けの節も参照。.

新しい!!: ノルムと半双線型形式 · 続きを見る »

半ノルム

2 の半ノルムになる 数学の特に線型代数学および函数解析学における半ノルム(はんのるむ、semi­norm, semi-norm; セミノルム)は、ベクトル空間上で定義される絶対斉次劣加法的函数で、正定値と制約しないことによるノルムの一般化である。 半ノルムの値は非負かつ符号反転に関して対称であり、函数として かつ凸である。 各半ノルムには、適当な剰余類をとる商構成に誘導されるノルムが付随する。半ノルムからなる族を用いて、局所凸線型空間を定義することができる。.

新しい!!: ノルムと半ノルム · 続きを見る »

単位ベクトル

単位ベクトル(たんい-ベクトル、unit vector)とは、長さ(ノルム)が 1 のベクトルの事である。 二つのベクトル, があって、 が単位ベクトル( |\mathbf|.

新しい!!: ノルムと単位ベクトル · 続きを見る »

単位円板

数学における平面上の点 P の周りの(あるいは P を中心とする)単位開円板(たんいかいえんばん)もしくは開単位円板(かいたんいえんばん、open unit disk/disc)とは、点 P からの距離が 1 より小さい点全体の成す集合 を言う。同様に点 P を中心とする単位閉円板(たんいへいえんばん)もしくは閉単位円板(へいたんいえんばん、closed unit disk)とは、点 P からの距離が 1 以下となるような点の軌跡 を言う。単位円板は円板や単位球体の特別な場合である。 特段の限定なしに単に単位円板と言ったときは、原点中心の通常のユークリッド計量に関する開円板 D_1(0) を意味するのが普通である。これは原点を中心とする半径 1 の円周が囲む領域の内部である。またガウス平面 C を考えれば、絶対値が 1 より小さい複素数全体の成す集合とも同一視される。C の部分集合と見たときの単位円板はしばしば \mathbb で表される。.

新しい!!: ノルムと単位円板 · 続きを見る »

単位球面

様々な単位球面 単位球面(たんいきゅうめん、英: unit sphere)とは、中心点からの距離が1の点の集合である。なお、ここでの距離とは一般的な距離の概念である。一方、単位球(たんいきゅう、英: unit ball)は、中心点からの距離が1以下の点の集合(閉単位球 (closed unit ball))、あるいは1未満の点の集合(開単位球 (open unit ball))である。通常、特に断らない限り、対象とする空間の原点を中心点とする。したがって英語で何の前置きもなく "the" をつけて書かれている場合は、原点を中心点とする単位球面や単位球を指す。 単純に言い換えれば、単位球面は半径が1の球面であり、単位球は半径が1の球である。任意の球面は平行移動と拡大・縮小によって単位球面に変換でき、この点が重要である。したがって、球面の研究は一般に単位球面を研究することに還元できる。.

新しい!!: ノルムと単位球面 · 続きを見る »

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: ノルムと可微分多様体 · 続きを見る »

双柱

双柱(そうちゅう)は、縦線であるバーティカルバーを横に2つ並べた記号である。文字列の区切りで使用されるほか、発音記号や数学においても使用される。にほんぼうとも呼ばれる。.

新しい!!: ノルムと双柱 · 続きを見る »

多元数

数学における多元数(たげんすう、hyper­complex number; 超複素数)は、実数体上の単位的多元環の元を表す歴史的な用語である。多元数の研究は19世紀後半に現代的な群の表現論の基盤となった。.

新しい!!: ノルムと多元数 · 続きを見る »

実数空間

数学において実 -次元数空間(すうくうかん、n-space)は実変数の -組を一つの変数であるかのように扱うことを許す座標空間である。太字の R の右肩に n を置いた で表す(または黒板太字を用いて とも、プレーンテキストでは とも書く)。さまざまな次元の が純粋数学や応用数学、あるいは物理学などの多くの分野で利用される。実 -次元数空間は実線型空間の原型例であり、n-次元ユークリッド空間を表現するものとしてよく用いられる。この事実から、幾何学的な暗喩が に対して広く用いられる(具体的には を平面、および を空間として扱うなど)。.

新しい!!: ノルムと実数空間 · 続きを見る »

実数直線

数学における実数直線(じっすうちょくせん、real line, real number line)は、その上の各点が実数であるような直線である。つまり、実数直線とは、すべての実数からなる集合 を、幾何学的な空間(具体的には一次元のユークリッド空間)とみなしたものということである。この空間はベクトル空間(またはアフィン空間)や距離空間、位相空間、測度空間あるいは線型連続体としてみることもできる。 単に実数全体の成す集合としての実数直線は記号 (あるいは黒板太字の &#x211d) で表されるのがふつうだが、それが一次元のユークリッド空間であることを強調する意味で と書かれることもある。 本項では の位相幾何学的、幾何学的あるいは実解析的な側面に焦点を当てる。もちろん実数の全体は一つの体として代数学でも重要な意味を持つが、その文脈での が直線として言及されるのは稀である。そういった観点を含めた の詳細は実数の項を参照のこと。.

新しい!!: ノルムと実数直線 · 続きを見る »

局所可積分函数

数学において局所可積分函数(きょくしょかせきぶんかんすう、)とは、その定義域に含まれる任意のコンパクト部分集合上で可積分(したがって積分が有限)であるような函数のことを言う。しばしば局所総和可能函数(locally summable function)とも呼ばれる。そのような函数は、Lp空間と似ているがその元の無限大での振舞いについて制限を要さないような函数空間に属するという点において、重要となる。言い換えると、局所可積分函数は、無限大において任意に早く増大することも許されるが、通常の可積分函数とある意味似た方法によって依然として扱うことが出来るものとなっている。.

新しい!!: ノルムと局所可積分函数 · 続きを見る »

局所凸位相ベクトル空間

関数解析学および関連する数学の分野において、局所凸位相ベクトル空間(きょくしょとついそうベクトルくうかん、)あるいは局所凸空間(locally convex space)は、ノルム空間を一般化する位相ベクトル空間(TVS)の例である。それらは、均衡かつ併呑な凸集合の平行移動によって位相が生成されるような位相ベクトル空間として定義される。または代わりに、それらは半ノルムの族を伴うベクトル空間として定義され、その族に関して位相を定義することが出来る。一般にこのような空間は必ずしもノルム化可能ではないが、零ベクトルに対する凸局所基の存在はハーン=バナッハの定理の成立を保証する上で十分に強く、その結果として連続線型汎函数に関する豊富な理論がもたらされた。 フレシェ空間は、距離化可能かつその距離に関して完備であるような局所凸空間である。それらは、ノルムに関する完備ベクトル空間であるようなバナッハ空間の一般化である。.

新しい!!: ノルムと局所凸位相ベクトル空間 · 続きを見る »

中線定理

中線定理(ちゅうせんていり、parallelogram law)とは、幾何学において、三角形の中線の長さと辺の長さの関係を表す定理である。パップスの定理と知られているが、実はアポロニウスが発見した定理である。.

新しい!!: ノルムと中線定理 · 続きを見る »

主成分分析

主成分分析(しゅせいぶんぶんせき、)とは、相関のある多数の変数から相関のない少数で全体のばらつきを最もよく表す主成分と呼ばれる変数を合成する多変量解析の一手法。データの次元を削減するために用いられる。 主成分を与える変換は、第一主成分の分散を最大化し、続く主成分はそれまでに決定した主成分と直交するという拘束条件の下で分散を最大化するようにして選ばれる。主成分の分散を最大化することは、観測値の変化に対する説明能力を可能な限り主成分に持たせる目的で行われる。選ばれた主成分は互いに直交し、与えられた観測値のセットを線型結合として表すことができる。言い換えると、主成分は観測値のセットの直交基底となっている。主成分ベクトルの直交性は、主成分ベクトルが共分散行列(あるいは相関行列)の固有ベクトルになっており、共分散行列が実対称行列であることから導かれる。 主成分分析は純粋に固有ベクトルに基づく多変量解析の中で最も単純なものである。主成分分析は、データの分散をより良く説明するという観点から、そのデータの内部構造を明らかにするものだと考えられる。多くの場合、多変量データは次元が大きく、各変数を軸にとって視覚化することは難しいが、主成分分析によって情報をより少ない次元に集約することでデータを視覚化できる。集約によって得られる情報は、データセットを元のデータ変数の空間から主成分ベクトルのなす空間へ射影したものであり、元のデータから有用な情報を抜き出したものになっている。主成分分析によるデータ構造の可視化は、可視化に必要なだけ先頭から少数の主成分を選択することで実現される。 主成分分析はにおける主要な道具であり、にも使われる。主成分分析は観測値の共分散行列や相関行列に対する固有値分解、あるいは(大抵は正規化された)データ行列の特異値分解によって行われる。主成分分析の結果は主成分得点(因子得点、score)と主成分負荷量(因子負荷量、loadings)によって評価される。主成分得点とは、あるデータ点を主成分ベクトルで表現した場合の基底ベクトルにかかる係数であり、ある主成分ベクトルのデータ点に対する寄与の大きさを示す。主成分負荷量はある主成分得点に対する個々の(正規化された)観測値の重みであり、観測値と主成分の相関係数として与えられる。主成分分析は観測値の間の相対的なスケールに対して敏感である。 主成分分析による評価は主成分得点と主成分負荷量をそれぞれ可視化した主成分プロット、あるいは両者を重ね合わせたバイプロットを通して解釈される。主成分分析を実行するためのソフトウェアや関数によって、観測値の基準化の方法や数値計算のアルゴリズムに細かな差異が存在し、個々の方法は必ずしも互いに等価であるとは限らない(例えば、R言語における prcomp 関数と FactoMineR の PCA 関数の結果は異なる)。.

新しい!!: ノルムと主成分分析 · 続きを見る »

三角不等式

数学における三角不等式(さんかくふとうしき、triangle inequality)は、任意の三角形に対してその任意の二辺の和が残りの一辺よりも大きくなければならないことを述べるものである。三角形の三辺が で最大辺が とすれば、三角不等式は が成り立つことを主張している.

新しい!!: ノルムと三角不等式 · 続きを見る »

一般化モーメント法

一般化モーメント法(いっぱんかモーメントほう、generalized method of moments, GMM)とは、計量経済学において統計モデルのパラメーターを推定するための一般的な方法である。通常、セミパラメトリックモデルで適用され、そのようなセミパラメトリックモデルにおいて興味のあるパラメーターは有限次元であり、一方データの分布関数の全容は知られていないこともありうる。よってそのようなモデルでは最尤法が適用できない。 一般化モーメント法においては、モデルについてのいくつかのモーメント条件が特定されている必要がある。これらのモーメント条件はモデルのパラメーターとデータの関数である。例えば、真のパラメーターの下で期待値が0となるようなものがある。この時、一般化モーメント法はモーメント条件の標本平均のあるノルムを最小化する。 一般化モーメント法による推定量は一致性、漸近正規性を持つことが知られ、さらにモーメント条件以外の情報を使わないすべての推定量のクラスにおいて統計的に効率的であることも知られている。 一般化モーメント法はラース・ハンセンにより1982年に、カール・ピアソンが1894年に導入したモーメント法の一つの一般化として提案された。ハンセンはこの業績により2013年のノーベル経済学賞を受賞した。.

新しい!!: ノルムと一般化モーメント法 · 続きを見る »

平均

平均(へいきん、mean, Mittelwert, moyenne)または平均値(へいきんち、mean value)は、観測値の総和を観測値の個数で割ったものである。 例えば A、B、C という3人の体重がそれぞれ 55 kg、60 kg、80 kg であったとすると、3人の体重の平均値は (55 kg + 60 kg + 80 kg)/3.

新しい!!: ノルムと平均 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: ノルムと幾何学 · 続きを見る »

二次形式

数学における二次形式(にじけいしき、quadratic form) は、いくつかの変数に関する次数が 2 の斉次多項式である。たとえば は変数 x, y に関する二次形式である。 二次形式は数学のいろいろな分野(数論、線型代数学、群論(直交群)、微分幾何学(リーマン計量)、微分位相幾何学(四次元多様体の交叉形式)、リー理論(キリング形式)など)で中心的な位置を占める概念である。.

新しい!!: ノルムと二次形式 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: ノルムと代数的数 · 続きを見る »

付値

付値(ふち、valuation、賦値、附値とも)とは、単位元 1 を持つ環 R と G に対して、以下の3条件を満たす写像 v: R → G ∪ である。.

新しい!!: ノルムと付値 · 続きを見る »

弱位相

数学における弱位相(じゃくいそう、)は、の代わりとなる語である。この語は、連続双対に関する(ノルム線型空間のような)線型位相空間の始位相を表すために最もよく用いられる。この記事ではこの場合を扱う。これは函数解析学の概念の一つである。 線型位相空間の部分集合が弱閉(あるいは弱コンパクト)であるとは、それらが弱位相に関して閉(あるいはコンパクト)であることをいう。同様に、函数が弱位相に関して連続(あるいは微分可能、解析的など)の場合、しばしば弱連続(あるいは弱微分可能、弱解析的など)と呼ばれる。.

新しい!!: ノルムと弱位相 · 続きを見る »

弱位相 (極位相)

函数解析学および関連する数学の分野において、弱位相(じゃくいそう、)とは、極位相、すなわち、ある双対組上の最小の開集合を伴う位相のことを言う。最も細かい(finest)極位相は、強位相と呼ばれる。 弱位相の下で、有界集合は相対コンパクト集合と一致する。この事実より重要なブルバキ=アラオグルの定理が導かれる。.

新しい!!: ノルムと弱位相 (極位相) · 続きを見る »

強位相 (極位相)

函数解析学と関連する数学の分野において、強位相(きょういそう、)とは、極位相、すなわちある双対組上で最大の開集合を伴う位相である。極位相は弱位相と呼ばれる。.

新しい!!: ノルムと強位相 (極位相) · 続きを見る »

強圧的函数

数学において強圧的函数(きょうあつてきかんすう、)とは、それが定義されている空間の極限において「急速に成長する」函数である。文脈によって異なる定義が存在する。.

新しい!!: ノルムと強圧的函数 · 続きを見る »

位相偏移変調

位相偏移変調(いそうへんいへんちょう)もしくは位相シフトキーイング(phase-shift keying, PSK)は、基準信号(搬送波)の位相を変調または変化させることによって、データを伝達する、デジタル変調である。.

新しい!!: ノルムと位相偏移変調 · 続きを見る »

位相的場の理論

位相的場の理論(いそうてきばのりろん)もしくは位相場理論(いそうばりろん)あるいはは、を計算する場の量子論である。 TQFTは物理学者により開拓されたにもかかわらず、数学的にも興味を持たれていて、結び目理論や代数トポロジーの 4次元多様体の理論や代数幾何学のモジュライ空間の理論という他のものにも関係している。サイモン・ドナルドソン, ヴォーン・ジョーンズ, エドワード・ウィッテン, や マキシム・コンツェビッチ は皆、フィールズ賞 をとり、位相的場の理論に関連した仕事を行っている。 物性物理学では、位相的場の理論は、分数量子ホール効果や、凝縮状態や他の状態のような、の低エネルギー有効理論である。.

新しい!!: ノルムと位相的場の理論 · 続きを見る »

位相群の群環

数学において、局所コンパクト群の群環(ぐんかん、group algebra)とは、その群の表現が適当な環の表現の表現として読み替えることができるような(いくつかの)構成法が与えられたときの、その環(ふつうは作用素環あるいはもっと一般のバナハ代数)を総称して呼ぶものである。そういった環は、位相を抜きにして考えた群に対する群環と同じような働きを果たす。.

新しい!!: ノルムと位相群の群環 · 続きを見る »

作用素

数学における作用素(さようそ、operator)は、しばしば写像、函数、変換などの同義語として用いられる。函数解析学においては主にヒルベルト空間やバナッハ空間上の(必ずしも写像でない部分写像の意味での)線型変換を単に作用素と呼ぶ。そのような空間として特に函数空間と呼ばれる函数の成す無限次元線型空間は典型的であり(同じものを物理学の分野、特に量子力学などでは演算子(えんざんし)と呼ぶ)、このとき、作用素を関数を別の関数にうつす写像として理解することができる。数(定数関数)の集合に値をとる作用素は汎函数(はんかんすう、functional)と呼ばれる。 また、群や環が空間に作用しているとき、群や環の各元が定める空間上の変換、あるいはその変換が引き起こす関数空間上の変換のことを作用素ということがある。.

新しい!!: ノルムと作用素 · 続きを見る »

作用素ノルム

数学の分野における作用素ノルム(さようそノルム、Operator norm)とは、線形作用素の大きさを測る際に用いられるある種の指標のことを言う。より正式には、与えられた二つのノルム線形空間の間の有界線形作用素からなる空間上に定義されるノルムのことを言う。.

新しい!!: ノルムと作用素ノルム · 続きを見る »

作用素環論

作用素環論(さようそかんろん、)とは、作用素環とよばれるクラスの位相線型環を主に研究する数学の分野である。研究対象の直接的な定義からは複素数体上無限次元の線型代数学と言え、普通関数解析学に分類されている。しかし、その手法や応用はいわゆる代数学・幾何学・解析学の諸分野に幅広くわたり、アラン・コンヌが提唱する非可換幾何の枠組みを与えていることでも特筆される。 作用素環とは普通ヒルベルト空間上の有界線型作用素(連続な線型写像)のなす複素数体上の線型環に適当なノルムによる位相を定めたもので、随伴作用とよばれる対合変換で閉じたもののことを指す。この随伴作用は複素行列の共役転置作用をヒルベルト空間上の作用素について考えたものであり、有限次元の線型代数学と同様に自己共役作用素やユニタリ作用素が理論の展開に重要な役割をはたす。主要な作用素環のクラスとしては、局所コンパクト空間上の複素数値連続関数環の「量子化」を与えていると考えられるC*-環や、可測関数環に対応するフォン・ノイマン環があげられる。それ以外にも、考える作用素環の無限性をとらえる非有界(自己共役)作用素も決定的な役割を果たしているし、多様体上の微分構造に対応するより繊細な構造の位相環と、それらに対するド・ラームコホモロジーの類似物なども研究されている。 このような作用素環が可換になったり I 型とよばれる簡単な構造を持つ場合にさまざまな(作用素環以前の)古典的な対象が現れ、作用素環の構造が複雑になるほど古典的な数学では捉えにくい複雑な状況が表されていると考えられる。作用素環論の主な目標として、このように作用素環によって「非可換」化・量子化された幾何的対象を表現し、通常の図形と(可分)位相群などとを統一的に理解することや、それらに対するホモロジー・コホモロジー的な理論(K理論)の構成と理解などが挙げられる。 1930年代のとフォン・ノイマンのフォン・ノイマン環に関する一連の論文や、1940年代のイズライル・ゲルファントとによるC*-環に関する研究が作用素環論の始まりだといわれている。可換環と局所コンパクト空間の圏の同値性を与えるゲルファント・ナイマルクの定理はアレクサンドル・グロタンディークによるスキームの概念にも影響を与えている。1970年代に冨田・竹崎理論を駆使してコンヌが III 型フォン・ノイマン環の分類をほぼ完成させた。1980年代にはヴォーン・ジョーンズによって部分因子環の理論と、その派生物としてトポロジーにおける結び目の不変量を与えるようなジョーンズ多項式が得られた。一方で作用素環はそのはじめから数理物理(特に量子力学)の定式化に使われることが意識されており、現在でも物理学とのあいだに活発な交流がある。 日本の作用素環論の研究者で1994年以降、ICMで全体講演をしたものはいないが、招待講演者の中には小沢登高、泉正己がいる。.

新しい!!: ノルムと作用素環論 · 続きを見る »

ミンコフスキー汎関数

数学の関数解析学の分野におけるミンコフスキー汎関数(ミンコフスキーはんかんすう、)とは、線型空間上に距離の概念をもたらすような関数のことである。 K を、線型空間 V に含まれる対称な凸体とする。V 上の関数 p を によって定める(ただしこの右辺が well-defined である場合)。.

新しい!!: ノルムとミンコフスキー汎関数 · 続きを見る »

ノルム多元体

数学におけるノルム多元体(のるむたげんたい、normed division algebra; ノルム付き可除代数)は、乗法的なノルムを持つ多元体を言う。即ち、実または複素数体上のノルム多元体 A は、多元体であって、かつ任意の x, y ∈ A に対して を満たすノルム ǁ•ǁ Porteous (1969) p.277に関してノルム線型空間の構造も持つ。 定義からは無限次元のノルム多元環と言うものも考えることができるが、実はこれは起こらない。実数体上のノルム多元体は同型の違いを除いて.

新しい!!: ノルムとノルム多元体 · 続きを見る »

ノルム代数

数学の特に函数解析学におけるノルム環(ノルムかん)またはノルム代数(ノルムだいすう、normed algebra; ノルム多元環、ノルム線型環) は適当な位相体 (とくに実数体 または複素数体 )上のノルム空間かつ多元環であって、そのノルムが を満たすものを言う。加えて、 が乗法単位元 を持つ(単位的多元環)ならば も仮定することがある。.

新しい!!: ノルムとノルム代数 · 続きを見る »

ノルム保存型擬ポテンシャル

ノルム保存型擬ポテンシャル(ノルムほぞんがたぎポテンシャル、norm-conserving pseudopotential)は、1979年Hamann等によって考案された第一原理擬ポテンシャル(経験に依らないで作られた擬ポテンシャル)。1982年にBachelet等によって、水素からプルトニウムまでの擬ポテンシャル作成のためのパラメーターの表を掲載した論文が出現してから、一般的に使用されるようになった。ノルム保存擬ポテンシャル(ノルムほぞんぎポテンシャル)とも言う。 ノルム保存型擬ポテンシャル+平面波基底による電子状態計算手法が、原子間に働く力を求める上で都合が良かった(力の表式が比較的簡単なことや、Pulay補正の問題を回避し易いことなど)ため、1985年にカー・パリネロ法が出現した当初は、同手法を用いる上でほぼ例外なくこのノルム保存型擬ポテンシャルが利用され、更に多くの研究場面で使用されることとなった。 1990年にRappe等により最適化されたノルム保存型擬ポテンシャルが考案された。この最適化されたノルム保存型擬ポテンシャルを用いると、より少ない平面波基底の数で、精度の良い電子状態の計算が可能となる。 ノルム保存型擬ポテンシャルの特徴は、切断半径内の電子の擬波動関数のノルムが、真の波動関数のノルムと一致するという条件の下に作られる(名前の由来)。これにより、切断半径内にある価電子が作る静電的ポテンシャルを正しく与えることができ、また原子の擬波動関数の対数微分と真の波動関数の対数微分の値及びそのエネルギー依存性がエネルギーの一次まで一致する。その結果、孤立した原子について作られた擬ポテンシャルを分子や固体に精度良く適用することが可能となる(高いトランスフェラビリティー)。.

新しい!!: ノルムとノルム保存型擬ポテンシャル · 続きを見る »

ノルム化可能空間

数学における位相線型空間がノルム付け可能であるとは、そのもともとの位相が適当なに一致するときに言う。ノルム付け可能な位相線型空間はノルム化可能線型空間あるいは短くノルム化可能空間(ノルムかかのうくうかん、normable space; ノルム可能空間)と呼ぶ。ノルム化可能空間は位相空間論および函数解析学において特に興味を持たれる。.

新しい!!: ノルムとノルム化可能空間 · 続きを見る »

ノルム線型空間

数学におけるノルム線型空間(ノルムせんけいくうかん、normed vector space; ノルム付きベクトル空間、ノルム付き線型空間)または短くノルム空間は、ノルムの定義されたベクトル空間を言う。 各成分が実数の、二次元あるいは三次元のベクトルからなる空間では、直観的にベクトルの「大きさ」(長さ)の概念が定義できる。この直観的アイデアを任意有限次元の実数ベクトル空間 に拡張するのは容易い。ベクトル空間におけるそのようなベクトルの大きさは以下のような性質を持つ.

新しい!!: ノルムとノルム線型空間 · 続きを見る »

ハーン–バナッハの定理

数学におけるハーン–バナッハの定理(ハーン–バナッハのていり、)は、関数解析学の分野における中心的な道具で、ベクトル空間の部分空間上で定義される有界線形汎関数が全空間への拡張できることについて述べたものである。これにより、どのようなノルム線形空間においても、その上で定義される連続線形汎関数が、双対空間の研究を「面白い」ものにするに「十分」なほどたくさんあることがわかる。ハーン-バナッハの定理の別形態のものとして、ハーン–バナッハの分離定理あるいは分離超平面定理と呼ばれるものがあり、の分野で多く用いられている。 定理の名前の由来は、1920年代後半にそれぞれ独立にこの定理を証明したハンス・ハーンとステファン・バナッハである。定理の特別な場合については、より早い段階(1912年)でエードゥアルト・ヘリーによって証明されており、またこの定理が導出されるようなある一般の拡張定理が、1923年にマルツェル・リースによって証明されていた。.

新しい!!: ノルムとハーン–バナッハの定理 · 続きを見る »

ハッセ=ダベンポートの関係式

数学において、 によって導入されたハッセ=ダベンポートの関係式(ハッセ=ダベンポートのかんけいしき、)とは、ガウス和に関する二つの関係式で、一つはハッセ=ダベンポートの持ち上げ関係式(Hasse-Davenport lifting relation)と呼ばれ、もう一つはハッセ=ダベンポートの積の関係式(Hasse-Davenport product relation)と呼ばれる。ハッセ=ダベンポートの持ち上げ関係式は、数論における異なる体上のガウス和に関連するある等式である。ヴェイユ予想に動機付けられ、 はこの式をある有限体上のフェルマー超曲面のゼータ関数を計算するために用いた。 ガウス和は有限体上のガンマ関数の類似物であり、ハッセ=ダベンポートの積の関係式は次のガウスの積公式の類似物である: \Gamma(z) \; \Gamma\left(z + \frac\right) \; \Gamma\left(z + \frac\right) \cdots \Gamma\left(z + \frac\right).

新しい!!: ノルムとハッセ=ダベンポートの関係式 · 続きを見る »

ハウスホルダー変換

ハウスホルダー変換(ハウスホルダーへんかん、Householder transformation)は直交変換の一種であり、行列のQR分解に用いられる。鏡映変換、基本直交変換ともいう。ハウスホルダーが1958年に発表した。.

新しい!!: ノルムとハウスホルダー変換 · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: ノルムとバナッハ空間 · 続きを見る »

バナッハ環

数学の、特に関数解析学の分野におけるバナッハ環(バナッハかん、; バナッハ代数、バナッハ多元環、バナッハ線型環)は、完備ノルム体(ふつうは実数体 または 複素数体 )上の結合多元環 であって、バナッハ空間(ノルムが存在し、に関して完備)ともなる。バナッハ代数におけるノルムは乗法に関して を満たすことが要求され、それにより乗法の連続性は保証される。名称はステファン・バナッハに由来する。 上述の定義において、バナッハ空間をノルム空間に緩める(つまり完備性を要請しない)場合、同様の構造はノルム環(ノルム線型環)と呼ばれる。 バナッハ環は、乗法単位元を持つとき、単位的(unital)であると言う。また乗法が可換であるとき、可換と言う。単位元を持つ持たないにかかわらず、任意のバナッハ環 は適当な単位的バナッハ環(つまり の「単位化」) にこの閉イデアルとなるように等長的に埋め込める。しばしば、扱っている環は単位的であるということがアプリオリに仮定される。すなわち、 を考えることで多くの理論を展開でき、その結果を元の環に応用するという方法が取られることがある。しかしこの方法は常に有効という訳ではない。例えば、単位元を持たないバナッハ環においては、すべての三角関数を定義することが出来ない。 実バナッハ環の理論は、複素バナッハ環の理論とは非常に異なるものである。例えば、非自明な複素バナッハ環の元のスペクトルは決して空とはならないが、実バナッハ環においてはいくつかの元のスペクトルは空となり得る。 p-進数体 上のバナッハ代数(-進バナッハ代数)は、p-進解析の一部として研究される。.

新しい!!: ノルムとバナッハ環 · 続きを見る »

ポテンシャル論

数学および数理物理学におけるポテンシャル論(ポテンシャルろん、)とは、調和函数に関する理論のことを言う。 19世紀の物理学において、自然界における基本的な力はラプラス方程式を満たすポテンシャルによってモデル化出来ることが知られ、そのときに「ポテンシャル論」という語が初めて用いられた。その後、例えば古典静電気学やニュートン重力などのより精確な理論の発展があったが、依然として「ポテンシャル論」という語は残されている。 ポテンシャル論とラプラス方程式の理論には、重複する点が少なからず存在する。それら二つの理論の明白な区別は、内容というよりも次に示す一つの明白な強調点に依っている:ポテンシャル論では「函数」の性質に焦点が置かれるが、ラプラス方程式の理論では「方程式」の性質に焦点が置かれる。例えば、調和函数の特異性に関する結果はポテンシャル論に属すると言えるが、その函数が境界値にどのように依存するかという点に関する結果はラプラス方程式の理論に属すると言えよう。もちろん、これは絶対的な区別ではなく、それら二つの理論における手法や結果には、実際には重複する点も多い。 近代のポテンシャル論はまた、確率論やマルコフ連鎖の理論とも密接に関連している。また連続の場合には、解析理論と密接に関連している。状態空間が有限の場合、その空間上の電気ネットワーク、推移確率に反比例する点の間の抵抗、ポテンシャルに比例する密度を導入することによって、そのような関連性が導かれる。そのような有限の場合であっても、ポテンシャル論におけるラプラシアンの analogue I-K はそれ自身の極大原理や一意性原理、バランス原理やその他の原理を備えるものである。.

新しい!!: ノルムとポテンシャル論 · 続きを見る »

ユークリッド環

数学の特に抽象代数学および環論におけるユークリッド整域(ユークリッドせいいき、Euclidean domain)あるいはユークリッド環(ユークリッドかん、Euclidean ring)とは、「ユークリッド写像(次数写像)」とも呼ばれるある種の構造を備えた環で、そこではユークリッドの互除法を適当に一般化したものが行える。この一般化された互除法は整数に対するもともとの互除法アルゴリズムとほとんど同じ形で行うことができ、任意のユークリッド環において二元の最大公約数を求めるのに適用できる。特に、任意の二元に対してそれらの最大公約数は存在し、それら二元の線型結合として書き表される(ベズーの等式)。また、ユークリッド環の任意のイデアルは主イデアル(つまり、単項生成)であり、したがって算術の基本定理の適当な一般化が成立する。すなわち、任意のユークリッド環は一意分解環である。 ユークリッド環のクラスをより大きな主イデアル環 (PID) のクラスと比較することには大いに意味がある。勝手な PID はユークリッド環(あるいは実際には有理整数環を考えるので十分だが)と多くの「構造的性質」を共有しているが、しかしユークリッド環には明示的に与えられるユークリッド写像から得られる具体性があるのでアルゴリズム的な応用に有用である。特に、有理整数環や体上一変数の任意の多項式環が容易に計算可能なユークリッド写像を持つユークリッド環となることは、計算代数において基本的に重要な事実である。 そういったことから、整域 が与えられたとき、 がユークリッド写像を持つことがわかるとしばしば非常に便利なのである。特に、そのとき が PID であることが分かるが、しかし一般にはユークリッド写像の存在が「明らか」でないときに が PID かどうかを決定する問題は、それがユークリッド環であるかどうかの決定よりも容易である。.

新しい!!: ノルムとユークリッド環 · 続きを見る »

ユークリッド距離

数学におけるユークリッド距離(ユークリッドきょり、Euclidean distance)またはユークリッド計量(ユークリッドけいりょう、Euclidean metric; ユークリッド距離函数)とは、人が定規で測るような二点間の「通常の」距離のことであり、ピタゴラスの公式によって与えられる。この公式を距離函数として用いればユークリッド空間は距離空間となる。ユークリッド距離に付随するノルムはユークリッドノルムと呼ばれる。古い書籍などはピタゴラス計量(Pythagorean metric)と呼んでいることがある。.

新しい!!: ノルムとユークリッド距離 · 続きを見る »

ユニタリ群

n 次のユニタリ群(ユニタリぐん、unitary group) U(n) とは、n 次ユニタリ行列のなす群のことである。演算は行列の積で与えられる。 ユニタリ群は一般線型群の部分群である。.

新しい!!: ノルムとユニタリ群 · 続きを見る »

リー・トロッター積公式

数学において、ソフス・リー (Sophus Lie, 1875) にちなんで名づけられたリーの積公式 (Lie product formula) は、任意の実あるいは複素正方行列, に対して、 が成り立つという定理である。ここで は の行列指数関数を表す。リー・トロッターの積公式 (Lie–Trotter product formula) およびトロッター・加藤の定理 (Trotter–Kato theorem) はこれをある種の非有界線型作用素, に拡張する。.

新しい!!: ノルムとリー・トロッター積公式 · 続きを見る »

リースの表現定理

リースの表現定理(リースのひょうげんていり、)とは、数学の関数解析学の分野におけるいくつかの有名な定理に対する呼称である。リース・フリジェシュの業績に敬意を表し、そのように名付けられた。.

新しい!!: ノルムとリースの表現定理 · 続きを見る »

リース=フィッシャーの定理

数学の実解析の分野におけるリース=フィッシャーの定理(リース=フィッシャーのていり、)は、自乗可積分函数からなる ''L''2 空間の性質に関する、いくつかの密接に関連する結果である。1907年にリース・フリジェシュとによってそれぞれ独自に証明された。 多くの研究者にとって、リース=フィッシャーの定理とは、ルベーグ積分の理論による ''L''''p'' 空間が完備であるという事実を指す。.

新しい!!: ノルムとリース=フィッシャーの定理 · 続きを見る »

リプシッツ連続

解析学におけるリプシッツ連続性(リプシッツれんぞくせい、Lipschitz continuity)は、に名を因む、函数のより強い形の一様連続性である。直観的には、リプシッツ連続函数は変化の速さが制限される。即ち、適当な有限値の実数が存在して、その函数のグラフ上の任意の二点を結ぶ直線の傾きの絶対値はその実数を超えない。この上界をその函数の「リプシッツ定数」(あるいは)と呼ぶ。例えば一階微分が有界な任意の函数はリプシッツである。 微分方程式論において、リプシッツ連続性は初期値問題の解の存在と一意性を保証するの中心的な条件である。リプシッツ連続性の特別な場合で、縮小性はバナッハの不動点定理において用いられる。 実数直線の有界閉集合上で定義される函数に関して、以下のような包含関係の鎖が知られている: また、 も成り立つ。.

新しい!!: ノルムとリプシッツ連続 · 続きを見る »

リアプノフ指数

リアプノフ指数(リアプノフしすう、Lyapunov exponent)とは、力学系においてごく接近した軌道が離れていく度合いを表す量である。リャプノフ指数とも表記される。ロシア人科学者 (アレクサンドル・リプノーフ、)にその名をちなむ。 系の相空間上の2つの軌道について考える。2つの軌道上の時刻 t における点の距離をベクトル δ(t) として、初期状態 t.

新しい!!: ノルムとリアプノフ指数 · 続きを見る »

レイリー商

数学における、与えられた複素エルミート行列 と零でないベクトル に対するレイリー商(れいりーしょう、Rayleigh quotient)またはレイリー・リッツ比(れいりー・りっつひ、Rayleigh–Ritz ratio)は次のように定義される: 名称は物理学者のレイリー卿とヴァルター・リッツに因む。 実行列および実ベクトルについて、エルミート行列である条件は対称行列である条件に、共役転置 は単なる転置 に一致し、また任意の零でない実スカラー に対してレイリー商は を満たす。エルミート(または実対称)行列の性質より、その固有値は実数であるから、レイリー商 の最小値は行列 の最小の固有値 に等しく、このときベクトル は最小固有値に対応する固有ベクトル に等しい。同様にレイリー商の最大値は行列 の最大固有値 に等しく、このときベクトル は最大固有値に対応する固有ベクトル に等しい。 レイリー商はにおいて行列のすべての固有値の厳密な値を求めることに利用される。また固有値計算アルゴリズムにおいて近似的な固有ベクトルから固有値の近似値を求めることにも利用される。具体的には、に基づく。 エルミート行列に限らない一般のレイリー商の値域はと呼ばれる(あるいは関数解析学においてはスペクトルという)。エルミート行列のレイリー商について、その数域はスペクトルノルムに等しい。関数解析学においては、 はスペクトル半径として知られる。C*代数や代数的量子力学の文脈では、固定された と代数上で動く に対するレイリー商 を、 の代数上のベクトル状態 と見なすことがある。.

新しい!!: ノルムとレイリー商 · 続きを見る »

ローレンツ空間

数学の解析学の分野におけるローレンツ空間(ローレンツくうかん、)は、1950年代にジョージ・ローレンツによって導入された概念で、よく知られた L^p 空間の一般化である。 ローレンツ空間は L^ と表される。L^ 空間のように、それは函数の「大きさ」に関する情報を表すノルム(正確には準ノルム)によって特徴づけられる。そのような函数の大きさに関する基本的な定性的概念として次の二つがある:その函数のグラフの高さがどの程度か、またそれがどの程度広がっているか、である。ローレンツノルムは、値域 (p) と定義域 (q) の両方について測度を指数的にリスケールすることで、それら二つのいずれについても L^ ノルムより強い制御を与える。ローレンツノルムは、しかし L^ ノルムのように函数の値の任意の再配分の下で不変である。.

新しい!!: ノルムとローレンツ空間 · 続きを見る »

ローレンツ群

ヘンドリック・アントーン・ローレンツ (1853–1928)  物理学および数学において、ローレンツ群 (Lorentz group) は、(重力を除いた)全ての古典的な設定における物理現象を説明する基礎となる、ミンコフスキー時空上の全てのローレンツ変換が成す群である。ローレンツ群の名前はオランダ人物理学者ヘンドリック・ローレンツに因む。 ローレンツ変換の下では、次の法則および等式が不変に保たれる。.

新しい!!: ノルムとローレンツ群 · 続きを見る »

ワイエルシュトラスのM判定法

数学におけるワイエルシュトラスのM判定法(わいえるしゅとらすのえむはんていほう、Weierstrass M-test)とは、無限級数に対する比較判定法に類似した判定法で、実数あるいは複素数に値をとる関数を項とする級数に適用する方法である。 を集合 A 上で定義された実数値ないし複素数値関数列とする。ある正数 Mn が存在して、任意の n ≥ 1 と任意の x ∈ Aに対して が成り立ち、また級数 が収束するとすると、級数 は A 上一様収束する。 ワイエルシュトラスのM判定法のより一般の場合として、関数 の終域が一般のバナッハ空間である場合を考えることができる。その場合はステートメントの の部分を と置き換えればよい。ここで ||·|| はバナッハ空間のノルムである。このバナッハ空間における判定法の用例は:en:Fréchet derivativeを参照。.

新しい!!: ノルムとワイエルシュトラスのM判定法 · 続きを見る »

ヴィラソロ代数

数学・物理学においてヴィラソロ代数(ヴィラソロだいすう、Virasoro algebra)は円周上定義される複素多項式ベクトル場の中心拡大として与えられる無限次元複素リー環で、共形場理論や弦理論において広く用いられる。名称は物理学者のに由来する。.

新しい!!: ノルムとヴィラソロ代数 · 続きを見る »

ボホナー空間

数学の分野におけるボホナー空間(ボホナーせきぶん、)とは、必ずしも実数の空間 R あるいは複素数の空間 C とは限らないバナッハ空間に値を取る関数への、Lp空間の概念の一般化である。 ボホナー空間 Lp(X) は、バナッハ空間 X に値を取るボホナー可測関数 f で、そのノルム ||f||X が通常の Lp 空間に属するようなもの全ての同値類からなる。したがって、X が複素数の集合であるなら、ボホナー空間は通常のルベーグ空間 Lp となる。 Lp 空間に関するほとんど全ての結果は、ボホナー空間についても同様に得られる。特に、ボホナー空間 Lp(X) は 1\le p\le \infty に対してバナッハ空間である。.

新しい!!: ノルムとボホナー空間 · 続きを見る »

ヘルダー条件

数学において、 次元ユークリッド空間上の実あるいは複素数値函数 がヘルダー条件(ヘルダーじょうけん、)を満たす、あるいはヘルダー連続であるとは、 の定義域内のすべての点 と に対して次の不等式を満たす非負の実定数, が存在することを言う。 より一般に、この条件は任意の二つの距離空間の間の函数に対して考えることが出来る。このような数 はヘルダー条件の指数と呼ばれる。 の場合はリプシッツ条件を意味し、 の場合は単純に函数が有界であることを意味する。この条件の名は、オットー・ヘルダーにちなむ。 実数直線のコンパクトな部分集合上の函数に対して、.

新しい!!: ノルムとヘルダー条件 · 続きを見る »

ブロッホ空間

数学の複素解析の分野において、の名にちなむブロッホ空間(ブロッホくうかん、)とは、複素平面におけるある開単位円板 D 上で定義される正則函数 f で が有界であるようなものからなる函数空間のことを言う。\mathcal あるいは ℬ と表記される。ブロッホ空間 \mathcal は、ノルムを次のように定めたときバナッハ空間となる。 これはブロッホノルム(Bloch norm)と呼ばれる。ブロッホ空間の元はブロッホ函数(Bloch function)と呼ばれる。.

新しい!!: ノルムとブロッホ空間 · 続きを見る »

プランクの法則

プランクの法則(プランクのほうそく、Planck's law)とは物理学における黒体から輻射(放射)される電磁波の分光放射輝度、もしくはエネルギー密度の波長分布に関する公式。プランクの公式とも呼ばれる。ある温度 における黒体からの電磁輻射の分光放射輝度を全波長領域において正しく説明することができる。1900年、ドイツの物理学者マックス・プランクによって導かれた。プランクはこの法則の導出を考える中で、輻射場の振動子のエネルギーが、あるエネルギー素量(現在ではエネルギー量子と呼ばれている) の整数倍になっていると仮定した。このエネルギーの量子仮説(量子化)はその後の量子力学の幕開けに大きな影響を与えている。.

新しい!!: ノルムとプランクの法則 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: ノルムとヒルベルト空間 · 続きを見る »

ピカールの逐次近似法

解析学において、ピカールの逐次近似法(ピカールのちくじきんじほう、Picard iteration)とは、常微分方程式の初期値問題に対し、解に一様収束する関数列を構成する手法。常微分方程式の初期値問題と同値な積分方程式に基づき、関数列を逐次的に構成する。常微分方程式の解の存在と一意性に関する基礎定理の証明に用いられる。より一般的な距離空間論の観点からは、この逐次近似列の構成法は縮小写像に対応しており、逐次近似法で得られる解は反復合成写像の不動点として捉えられる。ピカールの逐次近似法という名は19世紀のフランスの数学者エミール・ピカールに因む。ピカールは逐次近似の手法を発展させ、現在、常微分方程式の解の存在と一意性の理論で一般的に用いられる証明の論法を確立させたA. N. Kolmogorov & A. P. Yushkevich (2009)。.

新しい!!: ノルムとピカールの逐次近似法 · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

新しい!!: ノルムとテンソル · 続きを見る »

フランク・ウルフのアルゴリズム

フランク・ウルフのアルゴリズム とは、付き凸最適化問題を反復的一次最適化により解くアルゴリズム である。条件付き勾配法 (conditional gradient method)、 簡約勾配法、 凸結合法 (convex combination algorithm) とも呼ばれ、1956年におよびにより提案された。このアルゴリズムでは、各反復毎に目的関数の線形近似を行い、この(定義域を同じくする)線形関数を最適化する方向へと移動する。.

新しい!!: ノルムとフランク・ウルフのアルゴリズム · 続きを見る »

フリードリヒの不等式

数学におけるフリードリヒの不等式(フリードリヒのふとうしき、)とは、による函数解析学の一定理である。函数の弱微分に対する Lp 評価と、その定義域の形状を利用することで、その函数の''Lp'' ノルムに対する評価を与えるものである。ソボレフ空間上のいくつかのノルムが同値であることを示すために利用することが出来る。.

新しい!!: ノルムとフリードリヒの不等式 · 続きを見る »

フレシェ空間

数学の関数解析学周辺分野におけるフレシェ空間(フレシェくうかん、Fréchet spaces)は、モーリス・フレシェに名を因む、位相空間の一種である。フレシェ空間は(ノルムの導く距離に関して完備なノルム付き線型空間である)バナッハ空間を一般化するもので、平行移動不変距離関数に関して完備な局所凸空間を言う。バナッハ空間との違いは、その距離がノルムから生じるものでなくともよいことである。 フレシェ空間の位相構造は、バナッハ空間のと比べてノルムがない分だけより複雑なものではあるけれども、ハーン・バナッハの定理や開写像定理、バナッハ・シュタインハウスの定理などの関数解析学における重要な結果の多くが、フレシェ空間においてもやはり成り立つ。 無限回微分可能関数の成す空間などは、フレシェ空間の典型例である。.

新しい!!: ノルムとフレシェ空間 · 続きを見る »

フーリエ級数の収束

フーリエ級数の収束は純粋数学における調和解析の分野で研究される問題である。フーリエ級数は一般には収束するとは限らず、収束するための条件が存在する。 収束性の判断には各点収束、一様収束、絶対収束、L p 空間、総和法、チェザロ和の知識を要する。.

新しい!!: ノルムとフーリエ級数の収束 · 続きを見る »

フォン・ノイマンの不等式

数学の作用素論の分野において、ジョン・フォン・ノイマンの名にちなむフォン・ノイマンの不等式(フォン・ノイマンのふとうしき、)とは、T をあるヒルベルト空間上のとし、p をある多項式としたとき、p(T) のノルムは単位円板内の z に対する |p(z)| の上限によって上から評価されることを表す不等式である。言い換えると、固定された縮小写像 T に対するは、それ自身が縮小写像となる。この不等式は T のユニタリ伸張を考えることで直ちに証明することが出来る。 この不等式は、次に述べるマツエフの予想の特別な場合である:任意の多項式 P と、L^p 上の任意の縮小写像 T に対して が成立する(という予想)。ここで S は右シフト作用素である。フォン・ノイマンの不等式によれば p.

新しい!!: ノルムとフォン・ノイマンの不等式 · 続きを見る »

フォン・ノイマン環

フォン・ノイマン環(ふぉんのいまんかん、von Neumann algebra)とは、ヒルベルト空間上の有界線型作用素たちのなす C*-環のうちで恒等作用素を含み作用素の弱収束位相について閉じているもののことである。一般の C*-環と並ぶ作用素環論の主要な研究対象であり、理論の創始者の一人ジョン・フォン・ノイマンにちなんでこの名前がついている。可換なフォン・ノイマン環の重要な例として、σ-有限な測度空間 X 上の L∞ 級関数全体のなす環があげられる。.

新しい!!: ノルムとフォン・ノイマン環 · 続きを見る »

ドット積

数学あるいは物理学においてドット積(ドットせき、dot product)あるいは点乗積(てんじょうせき)とは、ベクトル演算の一種で、2つの同じ長さの数列から一つの数値を返す演算。代数的および幾何的に定義されている。幾何的定義では、(デカルト座標の入った)ユークリッド空間 において標準的に定義される内積のことである。.

新しい!!: ノルムとドット積 · 続きを見る »

ベルグマン空間

数学の一分野である複素解析において、の名にちなむベルグマン空間(ベルグマンくうかん、)とは、複素平面におけるある領域 D 内の正則函数で、絶対可積分であり境界において十分良い振る舞いをするものからなる函数空間のことを言う。具体的に、A^p(D) を D 内の正則函数で次の p-ノルム 評価を満たすものからなる空間とする: この評価から、A^p(D) は空間 L''p''(''D'') 内の正則函数の部分空間であることが分かる。ベルグマン空間はこの評価の帰結として得られるバナッハ空間で、D のコンパクト部分集合 K に対して有効なものとなる。すなわち が成立する。したがって正則函数の列の Lp(D) における収束は、コンパクト収束を意味し、したがってその極限函数もまた正則である。 p.

新しい!!: ノルムとベルグマン空間 · 続きを見る »

ベクトルのなす角

平面や空間上では、ふたつのベクトルのなす角は図形的に求めることができる。 そしてベクトルはさらに、図形とは無関係なベクトルに一般化されるが、この一般的なベクトルでも二つのベクトルのなす角を定義することができ、それにはベクトルの長さと内積を用いる。.

新しい!!: ノルムとベクトルのなす角 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: ノルムとベクトル空間 · 続きを見る »

ベクトル測度

数学の分野におけるベクトル測度(ベクトルそくど、)とは、ある集合族上で定義される、ある特定の性質を備えたベクトル値関数である。非負実数値のみを取る測度の概念の一般化である。.

新しい!!: ノルムとベクトル測度 · 続きを見る »

分解型複素数

線型代数学における分解型複素数(ぶんかいがたふくそすう、split-complex number; 分裂複素数)とは、二つの実数 x, y と j2.

新しい!!: ノルムと分解型複素数 · 続きを見る »

分離超平面定理

分離超平面定理(ぶんりちょうへいめんていり、separating hyperplane theorem, hyperplane separation theorem)は 次元ユークリッド空間上の互いに素な凸集合に関する幾何学における 2 つの定理を指す。 一つ目の定理は、互いに素な凸集合の両方が閉集合であってかつ少なくともいずれか 1 つの凸集合がコンパクト集合である場合、2 つの閉凸集合の間に 1 つの超平面が存在でき、また閉凸集合の間に 2 つの平行な超平面を隙間を作って置くことができることを示す。 二つ目の定理は、互いに素な凸集合があり両者が開集合である場合、2 つの開凸集合の間に 1 つの超平面をはさむことができるが、2 つの開凸集合の間には必ずしも隙間が存在するわけではないことを示す(従って第一の定理と異なり、複数の超平面を重ねずに挟むことができない状況が存在する)。 分離超平面に対して直交する軸を分離軸 と呼ぶ。これは、2 つのの分離軸への直交写像が互いに素であることによる。 分離超平面定理はヘルマン・ミンコフスキーの寄与によって発見された。ハーン=バナッハの分離定理はミンコフスキーの結果を線型位相空間へ一般化したものである。 関連する結果としてがある。マージン最大化超平面 は空間上にある点の集まりを 2 つのクラスタに分離する超平面の中で、両者のクラスタからの距離が等しいようなものである。このとき、それぞれのクラスタと分離超平面の間のマージンは最大化される。この事実はサポートベクターマシンなどに応用される。.

新しい!!: ノルムと分離超平面定理 · 続きを見る »

アポロニウスの問題

ユークリッド平面幾何学においてアポロニウスの問題(Problem of Apollonius)とは、平面において与えられた3つの円に接する円を描く問題である(図 1)。ペルガのアポロニウス (ca. 262 190 BC)が彼の著作 「接触」Ἐπαφαί. (Epaphaí, "Tangencies")においてこの有名な問題を提起し、解決した。この著作「接触」は現在失われているが、アレキサンドリアのパップスによる、アポロニウスの成果がまとめられた4世紀のレポートは現存している。3つの与円本項では与えられた円(Given circles)を に従って与円と訳す。は一般的に、その3つの円に接する8つの異なる円を持ち(図 2)、この円が3つの円を内部に持つか外部に持つかはそれぞれ異なる。すなわち、それぞれの円は、与えられた3つの円のうち一部を内部に持ち(残りの円は外部に持つ)、濃度が3の集合の部分集合は 23.

新しい!!: ノルムとアポロニウスの問題 · 続きを見る »

アルカリ岩

アルカリ岩(あるかりがん、alkaline rock あるいは alkali rock)は、化学組成上においてアルカリ性質を保有する火成岩。.

新しい!!: ノルムとアルカリ岩 · 続きを見る »

エルゴード定理

数学においてエルゴード定理(エルゴードていり、ergodic theorem)とは、力学系における時間平均と空間平均を一致を表す定理。ジョージ・バーコフによって示された個別エルゴード定理や、フォン・ノイマンによって示された平均エルゴード定理が知られている。.

新しい!!: ノルムとエルゴード定理 · 続きを見る »

カレント (数学)

数学、特に函数解析、微分幾何学や(geometric measure theory)では、(Georges de Rham)の意味でk-カレント(k-current)は、滑らかな多様体(smooth manifold) M のコンパクトな台を持つ微分形式 k-形式の空間上の汎函数である。形式的なカレントの振る舞いは、微分形式上シュワルツの超函数に似ている。幾何学的な設定では、ディラックのデルタ函数や、より一般的な M の部分集合に沿った((multipole)を持つ)デルタ函数の方向微分も、一般化した部分多様体上の積分で表わすことができる。.

新しい!!: ノルムとカレント (数学) · 続きを見る »

ガウス・ニュートン法

ウス・ニュートン法(ガウス・ニュートンほう、Gauss-Newton method)は、非線形最小二乗法を解く手法の一つである。これは関数の最大・最小値を見出すニュートン法の修正とみなすことができる。ニュートン法とは違い、ガウス・ニュートン法は二乗和の最小化にしか用いることができないが、計算するのが困難な2階微分が不要という長所がある。 非線形最小二乗法はなどで、観測データを良く表すようにモデルのパラメータを調整するために必要となる。 この手法の名称はカール・フリードリヒ・ガウスとアイザック・ニュートンにちなむ。.

新しい!!: ノルムとガウス・ニュートン法 · 続きを見る »

ガウス軌道

計算化学および分子物理学において、ガウス軌道(ガウスきどう、) またはガウス型軌道 ()とは、原子軌道またはLCAO法における分子軌道、およびそれに依存する様々な量を計算するために用いられる関数である。.

新しい!!: ノルムとガウス軌道 · 続きを見る »

ケーリー=ディクソンの構成法

数学におけるケーリー=ディクソンの構成法(ケーリー・ディクソンのこうせいほう)は、アーサー・ケイリーとレオナード・E・ディクソンにちなんで名づけられた、実数全体の成す体上の多元環の系列を与える方法で、各段階の多元環は直前のものの二倍の次元を持つ。この方法で与えられる各段階の多元環はケーリー=ディクソン代数として知られる。これらは複素数を拡張するから、超複素数系となっている。 これらの代数はすべて対合(または共役)を持ち、ある元とその共役元との積(場合によってはその平方根)はノルムと呼ばれる。 最初の数段階では、次の代数へ進むごとに、特徴的な代数的性質をひとつひとつ失っていく。 より一般的には、ケーリー=ディクソンの構成法とは、任意の対合つき代数系をとって倍の次元の対合つき代数系にすることである。.

新しい!!: ノルムとケーリー=ディクソンの構成法 · 続きを見る »

ゲルファント=ナイマルクの定理

作用素環論において、ゲルファント=ナイマルクの定理(-のていり、Gelfand–Naimark theorem)とはC*-環の基本構造定理。可換なC*-環がある(局所)コンパクト・ハウスドルフ空間上の連続な複素数値関数のなす関数環と等距離*-同型となることを主張する。1943年にロシアの数学者イズライル・ゲルファントとによって、 導かれた I. M. Gelfand and M. A. Naimark, "," Mat.

新しい!!: ノルムとゲルファント=ナイマルクの定理 · 続きを見る »

コーシー=シュワルツの不等式

数学におけるコーシー=シュワルツの不等式(コーシーシュワルツのふとうしき、Cauchy–Schwarz inequality)、シュワルツの不等式、シュヴァルツの不等式あるいはコーシー=ブニャコフスキー=シュワルツの不等式 (Cauchy–Bunyakovski–Schwarz inequality) とは、内積空間における二つのベクトルの間の内積がとりうる値をそれぞれのベクトルのノルムによって評価する不等式である。線型代数学や関数解析学における有限次元および無限次元のベクトルに対するさまざまな内積や、確率論における分散や共分散に適用されるなど、様々な異なる状況で現れる有用な不等式である。 数列に対する不等式はオーギュスタン=ルイ・コーシーによって1821年に、積分系での不等式はまずヴィクトール・ブニャコフスキーによって1859年に発見された後ヘルマン・アマンドゥス・シュワルツによって1888年に再発見された。.

新しい!!: ノルムとコーシー=シュワルツの不等式 · 続きを見る »

シュレーディンガー描像

量子論においてシュレーディンガー描像(シュレーディンガーびょうぞう)とは、系の時間発展について「オブザーバブルは時間変化せずに、状態が時間発展する」と考える方法である。 これは「状態は時間変化せず、オブザーバブルが時間発展する」と考えるハイゼンベルク描像や、「状態もオブザーバブルも時間発展する」と考える相互作用描像とは異なる考え方・定式化であるが、どの描像を用いても得られるオブザーバブルの期待値や測定値の確率分布は同じなので等価な理論である。.

新しい!!: ノルムとシュレーディンガー描像 · 続きを見る »

シュレーディンガー方程式

ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

新しい!!: ノルムとシュレーディンガー方程式 · 続きを見る »

シュワルツ超函数

解析学におけるシュワルツ超函数(シュワルツちょうかんすう、distribution; 分布)あるいは超函数(generalized function; 広義の函数)は、函数の一般化となる数学的対象である。シュワルツ超函数の概念は、古典的な意味での導函数を持たない函数に対しても微分を可能とする。特に、任意の局所可積分函数は超函数の意味で微分可能である。シュワルツ超函数は偏微分方程式の弱解(広義の解)の定式化に広く用いられる。古典的な意味での解(真の解)が存在しないか構成が非常に困難であるような場合でも、その微分方程式の超函数解はしばしばより容易に求まる。シュワルツ超函数の概念は、多くの問題が自然に解や初期条件がディラック・デルタのような超函数となるような偏微分方程式として定式化される物理学や工学においても重要である。 広義の函数としての超函数 (generalized function) は1935年セルゲイ・ソボレフによって導入されたが、その後1940年代になって一貫した超函数論を展開するローラン・シュヴァルツによって再導入される。 超函数(distribution)の拡張の一つとして、佐藤超函数があるとみなすことができる。.

新しい!!: ノルムとシュワルツ超函数 · 続きを見る »

シフト作用素

数学の、特に関数解析学の分野に現れるシフト作用素(シフトさようそ、)あるいは平行移動作用素(translation operator)とは、ある関数 をその平行移動 に写す作用素のことを言う。時系列解析では、シフト作用素はと呼ばれる。 シフト作用素は線型作用素の例であり、その簡明さおよび自然発生的な需要において重要なものである。シフト作用素のある実数関数上での作用は、調和解析の分野で重要な役割を担い、例えば概周期関数や、畳み込みの定義において用いられる.

新しい!!: ノルムとシフト作用素 · 続きを見る »

スレイター行列式

レイター行列式(スレイターぎょうれつしき、Slater determinant)とは、フェルミ粒子からなる多粒子系の状態を記述する波動関数を表すときに使われる行列式である。この行列式は2つの電子(または他のフェルミ粒子)の交換に関して符号を変化させることによって反対称性の必要条件と、その結果としてパウリの排他原理を満たすMolecular Quantum Mechanics Parts I and II: An Introduction to QUANTUM CHEMISTRY (Volume 1), P.W. Atkins, Oxford University Press, 1977, 。名称は1929年に波動関数の反対称性を保証する手段としてこの行列式を導入したジョン・クラーク・スレイターに因むが、この行列式の形式での波動関数はそれより3年前にハイゼンベルクとディラックの論文において最初に独立に登場していた。 量子論では複数の同種粒子は原理的に区別できない(エンタングルしている)。よって複数の同種粒子を含む系の状態ベクトルは一定の対称性を持つものに限られる。その対称性は、任意の2個の粒子を入れ替えることに対して、ボーズ粒子では対称性をもつ波動関数、フェルミ粒子では反対称性をもつ波動関数という、少し不自然にも見える形で現れる。この不自然さは、個々の粒子に別々の「位置」を割り当てるのは粒子が区別できることが大前提であるのに、区別ができない粒子にそれをやってしまったことによる。 スレイター行列式は、複数のフェルミ粒子系の波動関数が持っている反対称性と同じ性質を持っている。またスレイター行列式の線形結合も反対称性を満たす。よって多電子系などを表すときに、スレイター行列式は便利なのでよく用いられる。.

新しい!!: ノルムとスレイター行列式 · 続きを見る »

スカラー (数学)

線型代数学では、ベクトル空間のベクトルに対比するものとしての実数をスカラー(scalar)と呼び、ベクトルを定数倍して別のベクトルを作り出す演算としてスカラー乗法(スカラー倍)が定義される。より一般に、実数全体に替えて任意の体、例えば複素数全体を用いてベクトル空間を定義することができるが、そのときのベクトル空間のスカラーとはその体の元のことを示すものということになる。 ベクトル空間の上にスカラー積演算(スカラー倍と混同してはいけない)が定義されれば、二つのベクトルを掛けてスカラーを得ることができる。スカラー積を備えたベクトル空間は内積空間と呼ばれる。 四元数の実部(実成分)のことをスカラー部(スカラー成分)とも呼ぶ。 厳密な言い方ではないが、例えばベクトルや行列、テンソルなどの一般には「複合的」な値で決まる量が、実際には一つの成分に還元されてしまうとき、例えば 1 × n 行列と n × 1 行列の積は厳密には 1 × 1 行列となるが、これをスカラーと見做すことがよく行われる。 行列のスカラー倍を行列の積として実現する「スカラー行列」は、単位行列の適当なスカラー k-倍 kI の形に書ける行列の総称として用いられる。.

新しい!!: ノルムとスカラー (数学) · 続きを見る »

ソボレフ空間

数学においてソボレフ空間(ソボレフくうかん、Sobolev space)は、函数からなるベクトル空間で、函数それ自身とその与えられた階数までの導函数の ''Lp''-ノルムを組み合わせて得られるノルムを備えたものである。ここでいう微分を適当な弱い意味での微分と解釈することにより、ソボレフ空間は完備距離空間、したがってバナッハ空間を成す。直観的には、ソボレフ空間は(偏微分方程式のような応用範囲に対して)十分多くの導函数を持つ函数からなるバナッハ空間あるいはヒルベルト空間であって、函数の大きさと滑らかさの両方を測るようなノルムを備えたものということである。 ソボレフ空間の名称はロシア人数学者のセルゲイ・ソボレフに因む。ソボレフ空間の重要性は、偏微分方程式の解というものは古典的な意味での導函数を備える連続函数からなる古典的な空間の中ではなく、むしろソボレフ空間の中にあるとして捉えたほうが自然であるという事実にある。.

新しい!!: ノルムとソボレフ空間 · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: ノルムと内積 · 続きを見る »

凸錐

数学の線型代数学の分野において、凸錐(とつすい、)とは、ある順序体上のベクトル空間の部分集合で、正係数の線型結合の下で閉じているもののことを言う。.

新しい!!: ノルムと凸錐 · 続きを見る »

商線型空間

線型代数学において商線型空間(しょうせんけいくうかん、quotient vector space)あるいは単に商空間 (quotient space) とは、ベクトル空間 V とその部分線型空間 N に対して、N に属する全てのベクトルを 0 に「潰して」得られるベクトル空間である。これを部分空間 N による V の商空間あるいは N を法とする V の商空間といい、V/N で表す。.

新しい!!: ノルムと商線型空間 · 続きを見る »

全微分

微分積分学における多変数函数の全微分商、全微分係数あるいは単に全微分(ぜんびぶん、total derivative)は、外生的な変数の(任意に小さな)変分に対する函数の変分の割合(差分商)の極限である。このとき、外生的な変数による直接的な影響のみならず函数が持つ他の内生的変数を通じてもたらされる影響をも考慮する必要がある。これは(差分商の極限として定義される通常の実函数の微分を形式的に多変数化して得られる)より弱い概念である偏微分を用いるのでは有効な結果を得られないような解析学的主張に対して、より多くの結果を得られるということであり。またこの意味において、微分積分学の様々な概念がこの全微分をもとにして定義される。現代数学の多くの文献において、全微分(全微分可能)を単に微分(微分可能)のように言うことはよくある。 多変数函数に対する全微分可能性は、多変数の微分積分学における基本性質の一つである。函数の与えられた点における全微分可能性は、函数が局所的に線型変換で近似されることを意味している。これに対し、(任意方向の)偏微分は、任意方向を持つ直線上における線形近似に過ぎず、全体としては線型近似になるとは限らない。函数 の変数 に関する全微分の計算において、 以外の変数を定数と見なすことは必要でなく、実際他の変数が に依存することが許される。全微分では の に対する依存関係として、このような変数間の陰伏的な従属関係も含めて考えるのであるChiang, Alpha C. Fundamental Methods of Mathematical Economics, McGraw-Hill, third edition, 1984.

新しい!!: ノルムと全微分 · 続きを見る »

八元数

数学における八元数(はちげんすう、octonions; オクトニオン)の全体は実数体上のノルム多元体で、ふつう大文字アルファベットの O を使って、太字の O(あるいは黒板太字の 𝕆)で表される。実数体上のノルム多元体はたった四種類であり、O のほかは、実数の全体 R, 複素数の全体 C, 四元数の全体 H しかない。O はこれらノルム多元体の中で最大のもので、実八次元、これは H の次元の二倍である(O は H を拡大して得られる)。八元数の全体 O における乗法は非可換かつ非結合的だが、弱い形の結合性である冪結合律は満足する。 より広く調べられ利用されている四元数や複素数に比べれば、八元数についてはそれほどよく知られているわけではない。にもかかわらず、八元数にはいくつも興味深い性質があり、それに関連して(例外型リー群が持つような)例外的な構造もいくつも備えている。加えて、八元数は弦理論などといった分野に応用を持っている。 八元数は、ハミルトンの四元数の発見に刺激を受けたジョン・グレイヴスによって1843年に発見され、グレイヴスはこれを octaves と呼んだ。それとは独立にケイリーも八元数を発見しており、八元数のことをケイリー数、その全体をケイリー代数と呼ぶことがある。.

新しい!!: ノルムと八元数 · 続きを見る »

勾配 (ベクトル解析)

ベクトル解析におけるスカラー場の勾配(こうばい、gradient; グラディエント)は、各点においてそのスカラー場の変化率が最大となる方向への変化率の値を大きさにもつベクトルを対応させるベクトル場である。簡単に言えば、任意の量の空間における変位を、傾きとして表現(例えば図示)することができるが、そこで勾配はこの傾きの向きや傾きのきつさを表している。 ユークリッド空間上の関数の勾配を、別なユークリッド空間に値を持つ写像に対して一般化したものは、ヤコビ行列で与えられる。さらに一般化して、バナッハ空間から別のバナッハ空間への写像の勾配をフレシェ微分を通じて定義することができる。.

新しい!!: ノルムと勾配 (ベクトル解析) · 続きを見る »

四元数

数学における四元数(しげんすう、quaternion(クォターニオン))は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 一般に、四元数は の形に表される。ここで、 a, b, c, d は実数であり、i, j, k は基本的な「四元数の単位」である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字でユニコードの Double-Struck Capital H, U+210D, )と書かれる。またこの代数を、クリフォード代数の分類に従って というクリフォード代数として定義することもできる。この代数 は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば は実数の全体 を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 )だからである。 従って、単位四元数は三次元球面 上の群構造を選んだものとして考えることができて、群 を与える。これは に同型、あるいはまた の普遍被覆に同型である。.

新しい!!: ノルムと四元数 · 続きを見る »

B*-環

函数解析学における B*-環(ビー・スターかん、B*-algebra; B*-代数)は、両立するバナッハ環と *-環の構造を持ち、B*-条件と呼ばれる恒等式を満足するものである。言葉を変えれば、完備なノルムと双線型かつ連続な乗法を備える複素ベクトル空間であって、適当な条件を満足する対合を備えた代数系である。.

新しい!!: ノルムとB*-環 · 続きを見る »

Basic Linear Algebra Subprograms

Basic Linear Algebra Subprograms(BLAS)は、ベクトルと行列に関する基本線型代数操作を実行するライブラリAPIのデファクトスタンダードである。1979年に初公開され、これを使ったLAPACKなどの上位パッケージが構築されている。科学技術計算・高性能計算で多用される。 高度に最適化(高速な実装)された BLAS API の実装がインテル(Intel Math Kernel Library)などの各ハードウェアベンダーなどから提供されている。オープンソースの最適化 BLAS 実装として OpenBLAS や ATLAS がある。LINPACK ベンチマークの性能は、BLAS のサブルーチンである DGEMM(倍精度汎用行列乗算)の性能に大きく影響される。.

新しい!!: ノルムとBasic Linear Algebra Subprograms · 続きを見る »

C*-環

数学における -環(しーすたーかん、C*-algebra)とは複素数体上の完備なノルム環で複素共役に類似の作用をもつものであり、フォン・ノイマン環と並ぶ作用素環論の主要な研究対象である。-代数(シースターだいすう)とも呼ばれる。1943年のGel'fand-Naimarkと1946年のRickartの研究によって公理系が与えられた。'-algebra' という用語は1947年にSegalによって導入された。 -環はその内在的な構造のみにもとづいて公理的に定義されるが、実はどんな -環もヒルベルト空間上の線形作用素のなす環で、随伴操作とノルムに関する位相で閉じたものとして実現されることが知られている。また、可換な -環を考えることは局所コンパクト空間上の複素数値連続関数環を考えることになり、その連続関数環からはもとの位相空間を復元できるので、可換 -環の理論は局所コンパクト空間の理論と等価だといえる。一般の -環は、群(あるいは亜群)など、幾何学的な文脈に現れながら普通の空間とは見なされないようなものを包摂しうる変形(「量子化」)された空間を表していると考えることもできる。.

新しい!!: ノルムとC*-環 · 続きを見る »

球体

数学における球体(きゅうたい、ball)は球面の内側の空間全体を言う。それが境界点の全体である球面を全く含むとき閉球体(へいきゅうたい、closed ball)、全く含まないとき開球体(かいきゅうたい、open ball)と呼ばれる。 これらの概念は三次元ユークリッド空間のみならず、より低次または高次の空間、あるいはより一般の距離空間において定義することができる。-次元の球体は -次元(超)球体(あるいは短く -球体)と呼ばれ、その境界は(''n''−1)-次元(超)球面'''(あるいは短く -球面)と呼ばれる。例えばユークリッド平面における球体は円板のことであり、それを囲む境界は円周である。また、三次元ユークリッド空間における球体(通常の球体)は二次元球面(通常の球面)によって囲まれる体積を占める。 ユークリッド幾何学などの文脈において、球体 (ball) の意味でしばしば略式的に球 (sphere) と呼ぶ場合がある(球が球面の意である場合もある)。.

新しい!!: ノルムと球体 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: ノルムと球面 · 続きを見る »

空間 (数学)

数学における空間(くうかん、space)は、集合に適当な数学的構造を加味したものをいう。 現代数学における「空間」の扱いは、古典的な扱いと比べると、極めて異なる。 数学的空間は(ある空間のクラスが基となる空間のクラスの特徴を全て受け継ぐという意味で)しばしば階層構造を示す。例えば、任意の内積空間は、‖x‖2.

新しい!!: ノルムと空間 (数学) · 続きを見る »

立体

結ばれたトーラス体 幾何学における立体(りったい、body)あるいは中身のつまった図形 (solid figure) は、その表面となる曲面を記述することによって与えられる三次元の図形である。立体の表面は平坦または曲がった面の小片を繋ぎ合わせてかたち作ることができる。その表面をかたち作る小片が全て平面であるような立体は多面体という。様々な立体に対して、それらの体積や表面積を計算するための公式が存在する(参照)。より高い次元の図形についても一般にこのような仕方で「立体」を定式化するのは容易であるから、ここで述べた立体のことを特に三次元立体とよぶこともある。.

新しい!!: ノルムと立体 · 続きを見る »

符号 (数学)

数学における符号(ふごう、sign)は、任意の非零実数は正または負であるという性質に始まる。ふつうは0自身は符号を持たないが、ときにが意味を為す文脈もあり、また「 の符号は である」とすることが有効な場合もある。実数の符号の場合を敷衍して、数学や物理学などで「符号の変更」("change of sign") あるいは「符号反転」(negation) が、反数を対応付ける、あるいは−1-倍する操作として、実数以外の量に(それが正負零に分かれると限らないものでさえ)も用いられる。また、数学的対象が持つ正負の二項対立とよく似た側面、例えば置換の偶奇性などに対しても「符号」という言葉が用いられる。.

新しい!!: ノルムと符号 (数学) · 続きを見る »

符号付測度

数学における符号付測度(ふごうつきそくど、)とは、負の値を取ることも許されることで一般化された測度である。正負両方の値を取り得る有名な分布である電荷(electric charge)に由来して、チャージと呼ばれることもある。.

新しい!!: ノルムと符号付測度 · 続きを見る »

線形予測法

線形予測法(せんけいよそくほう、linear prediction)は、離散信号の将来の値をそれまでの標本群の線型写像として予測する数学的操作である。 デジタル信号処理では、線形予測法を線形予測符号 (LPC) と呼び、デジタルフィルタのサブセットと見ることができる。(数学の一分野としての)システム分析では、線形予測法は数学的モデルや最適化の一種と見ることができる。.

新しい!!: ノルムと線形予測法 · 続きを見る »

絶対収束

数学において、級数が絶対収束(ぜったいしゅうそく、converge absolutely)するとは、その各項の絶対値を取って得られる級数の和が有限の値になるときにいう。きちんと述べれば、実または複素数の級数 は となるとき、絶対収束すると言う。 絶対収束が無限級数の研究において重要であるのは、それが有限和の場合に成立する(が必ずしも全ての収束級数が持つわけではない)性質を持つようにするためにきわめて強力な条件であるとともに、それ自身が一般的な内容を議論するのに(その強い制約条件にもかかわらず)十分広範な級数のクラスを定めるからである。.

新しい!!: ノルムと絶対収束 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: ノルムと絶対値 · 続きを見る »

点と直線の距離

ユークリッド幾何学において点と直線の距離 (てんとちょくせんのきょり、Distance from a point to a line) とは、点と直線上の任意の点の距離で最短になるものをいう。点と直線を結ぶ線分で点と直線の距離に等しい長さをもつものは、与えられた直線と直交する性質がある。点と直線の距離を計算する公式は、いくつかの方法によって導出できる。 点と直線の間の最短距離を知ることは様々な場面において有益である。例えば、道路までの最短距離が分かったり、グラフ上の値のちらばりを定量化したりなどである。線形曲線回帰の一種であるでは、独立変数と従属変数が等しい分散を持つ場合には、近似曲線と各データ点の距離によって近似の精度が測定されるに帰着される。.

新しい!!: ノルムと点と直線の距離 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: ノルムと特殊相対性理論 · 続きを見る »

直交関数列

数学において直交関数列(ちょっこうかんすうれつ、orthogonal functions)とは互いに直交する関数列の事である。.

新しい!!: ノルムと直交関数列 · 続きを見る »

直積 (ベクトル)

線型代数学における直積(ちょくせき、direct product)あるいは外積(がいせき、outer product)は典型的には二つのベクトルのテンソル積を言う。の外積をとった結果は行列になる。外積の名称は内積に対照するもので、内積はベクトルの対をスカラーにする。外積は、クロス積の意味で使われることもあるため、どちらの意味で使われているか注意が必要である。 \beginu_1 \\ u_2 \\ u_3 \\ u_4\end \beginv_1 & v_2 & v_3\end.

新しい!!: ノルムと直積 (ベクトル) · 続きを見る »

随伴作用素

数学の特に函数解析学において、ヒルベルト空間上の各有界線型作用素は、対応する随伴作用素(ずいはんさようそ、adjoint operator)を持つ。作用素の随伴は正方行列の随伴行列の概念の無限次元の場合をも許すような一般化である。ヒルベルト空間上の作用素を「一般化された複素数」と考えれば、作用素の随伴は複素数に対する複素共軛の役割を果たすものである。 作用素 の随伴は、シャルル・エルミートに因んでエルミート共軛 (Hermitian conjugate) とも呼ばれ、 あるいは などで表される(後者は特にブラケット記法とともに用いられる)。.

新しい!!: ノルムと随伴作用素 · 続きを見る »

面積分

ベクトル解析における面積分(めんせきぶん、surface integral)は、曲面上でとった定積分であり、二重積分として捉えることもできる。線積分は一次元の類似物にあたる。曲面が与えられたとき、その上のスカラー場やベクトル場を積分することができる。 面積分は物理学、特に電磁気学の古典論に応用がある。 面積分の定義は、曲面を小さな面素へ分解することによって成される。.

新しい!!: ノルムと面積分 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: ノルムと行列 · 続きを見る »

行列ノルム

線型代数学における行列ノルム(ぎょうれつノルム、matrix norm)は、ベクトルのノルムを行列に対し自然に一般化したものである。.

新しい!!: ノルムと行列ノルム · 続きを見る »

複素測度

数学の、特に測度論の分野における複素測度(ふくそそくど、)とは、複素数値を取ることも許すことで概念として一般化された測度のことである。すなわち、大きさ(長さ、面積、体積)が複素数であるような集合も、その測度に対して許されている。.

新しい!!: ノルムと複素測度 · 続きを見る »

規格化

規格化 (normalization) ある空間で粒子が一つ存在し、それを記述する波動関数をΨとすると、Ψのノルムに関して、 とすることが規格化(正規化とも言う)である。積分は当該粒子の存在する全空間に対して行われる。積分の範囲は、その粒子のなす系に課された境界条件によって変わる。一つの例として周期的境界条件に基づく結晶格子では、以下のようにその単位胞内で規格化のための積分が行われる。 ここで、Vcell は単位胞の体積である。 直交座標系を考えて、r.

新しい!!: ノルムと規格化 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: ノルムと解析学 · 続きを見る »

角速度

運動学において、角速度(かくそくど、angular velocity)は、ある点をまわる回転運動の速度を、単位時間に進む角度によって表わした物理量である。言い換えれば角速度とは、原点と物体を結ぶ線分、すなわち動径が向く角度の時間変化量である。特に等速円運動する物体の角速度は、物体の速度を円の半径で割ったものとして与えられる。従って角速度の量の次元物理学などの文献においては、文脈上紛れがない限り、単に「次元」と呼ばれる。は、通常の並進運動の速度とは異なり速度の次元は長さ L に時間 T の逆数を掛けた L⋅T−1 である。、時間の逆数 T−1 となる。.

新しい!!: ノルムと角速度 · 続きを見る »

角速度の比較

角速度の比較(かくそくどのひかく)では、角速度の大きさを比較できるよう、昇順に表にする。 角速度はベクトル量であるが、ここではその大きさを扱う。.

新しい!!: ノルムと角速度の比較 · 続きを見る »

計量ベクトル空間

線型代数学における計量ベクトル空間(けいりょうベクトルくうかん、metric vector space)は、内積と呼ばれる付加的な構造を備えたベクトル空間であり、内積空間(ないせきくうかん、inner product space)とも呼ばれる。この付加構造は、空間内の任意の二つのベクトルに対してベクトルの内積と呼ばれるスカラーを対応付ける。内積によって、ベクトルの長さや二つのベクトルの間の角度などの直観的な幾何学的概念に対する厳密な導入が可能になる。また内積が零になることを以ってベクトルの間の直交性に意味を持たせることもできる。内積空間は、内積として点乗積(スカラー積)を備えたユークリッド空間を任意の次元(無限次元でもよい)のベクトル空間に対して一般化するもので、特に無限次元のものは函数解析学において研究される。 内積はそれに付随するノルムを自然に導き、内積空間はノルム空間の構造を持つ。内積に付随するノルムの定める距離に関して完備となる空間はヒルベルト空間と呼ばれ、必ずしも完備でない内積空間は(内積の導くノルムに関する完備化がヒルベルト空間となるから)前ヒルベルト空間 (pre-Hilbert space) と呼ばれる。複素数体上の内積空間はしばしばユニタリ空間 (unitary spaces) とも呼ばれる。.

新しい!!: ノルムと計量ベクトル空間 · 続きを見る »

超球の体積

初等幾何学における球体は決められた点から決められた距離以内にある点の全体が空間において占める領域であった。同様のことを -次元ユークリッド空間で行って -次元超球体が定義される。-次元超球体の体積率は数学全般を通して現れる重要な定数の一種である。.

新しい!!: ノルムと超球の体積 · 続きを見る »

超距離空間

数学において超距離空間(ちょうきょりくうかん、)とは、三角不等式が で置き換えられるような特殊な距離空間のことをいう。対応する距離函数はしばしば非アルキメデス距離や super-metric などとも呼ばれる。超距離空間に対するいくつかの定理は、第一印象では奇妙に感じられるかも知れないが、多くの応用の場面において自然に現れるものである。.

新しい!!: ノルムと超距離空間 · 続きを見る »

距離微分

数学の解析学の分野における距離微分(きょりびぶん、)とは、あるユークリッド空間上で定義され任意の距離空間に値を取るようなリプシッツ連続関数に対する、微分の概念の一般化である。この微分の定義のもとで、距離空間に値を取るリプシッツ関数へと、ラーデマッヘルの定理を一般化することが出来る。.

新しい!!: ノルムと距離微分 · 続きを見る »

距離函数

距離函数(きょりかんすう、distance function)、距離計量(きょりけいりょう)あるいは単に距離(きょり、distance)、計量(けいりょう、metric)は、集合の二点間の距離を定義する函数である。距離が定義されている集合を距離空間(きょりくうかん、metric space)と呼ぶ。距離はその集合上の位相(距離位相)を誘導するが、必ずしもすべての位相空間が距離位相によって生成されるわけではない。ある位相空間の位相を距離によって記述することができるとき、その位相空間は距離化可能 (metrizable) であるという。.

新しい!!: ノルムと距離函数 · 続きを見る »

跡 (線型代数学)

数学、特に線型代数学における行列の跡(せき、trace; トレース、Spur; シュプール)あるいは対角和(たいかくわ)は行列の主対角成分の総和である。それは基底変換に関して不変であり、また固有値の総和(固有値和)に等しい。即ち、行列の跡は行列の相似を除いて定まり、したがって一般に行列に対応する線型写像の跡として定義することができる。 行列の跡は、正方行列に対してのみ定義されることに注意せよ。この語は(この同じ数学的対象を意味する)ドイツ語のSpurからの翻訳借用である。.

新しい!!: ノルムと跡 (線型代数学) · 続きを見る »

近似による誤差

x の値が0より大きくなるほど誤差も大きくなっている。 近似による誤差 とは、真の値と近似値の差のことである。 近似による誤差は以下のような事情で発生する:.

新しい!!: ノルムと近似による誤差 · 続きを見る »

量子力学の数学的定式化

本項では相対論的効果を考えない量子力学の数学的定式化(りょうしりきがくのすうがくてきていしきか)を厳密に述べる。本項では量子力学に対する最低限の知識を仮定する。.

新しい!!: ノルムと量子力学の数学的定式化 · 続きを見る »

量子回帰定理

量子力学において、量子回帰定理(りょうしかいきていり、Quantum recurrence theorem)とは、量子状態の時間発展に関する定理。エネルギー固有状態として、離散準位のみをもつ量子系は時間発展により、初期状態のいくらでも近くに回帰することを主張する。古典力学におけるポアンカレの回帰定理の量子力学版に相当する。1957年にP.

新しい!!: ノルムと量子回帰定理 · 続きを見る »

自乗可積分函数

自乗可積分函数(じじょうかせきぶんかんすう、square-integrable function)とは、実数値または複素数値可測函数で絶対値の自乗の積分が有限であるものである。すなわち ならば、f は実数直線 (−∞, +&infin) 上で自乗可積分である。場合によっては積分区間が のように有界区間のこともある。.

新しい!!: ノルムと自乗可積分函数 · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

新しい!!: ノルムと自然対数 · 続きを見る »

長さ

長さ(ながさ、length)とは、.

新しい!!: ノルムと長さ · 続きを見る »

零ベクトル

零ベクトルあるいはゼロベクトルとは、ベクトルの加法においての単位元。直感的な理解においては大きさが0で向きを持たないベクトル。 太字で0(あるいは黒板太字)と表される。主に高校数学においては\vecのように上に矢印を置いて表されることがある。もちろん通常のベクトルのように要素を直接表記する場合もあり、例えば(1 -1)T+(-1 1)Tの解である(0 0)Tは零ベクトルの一つ。 Category:線型代数学 Category:数学に関する記事 Category:ベクトル.

新しい!!: ノルムと零ベクトル · 続きを見る »

零写像

数学における零写像(れいしゃぞう、ゼロしゃぞう、zero mapping)は、零元を持つ適当な代数系への写像であって、その定義域の全ての元を終域の零元へ写すものを言う。殊に、解析学における零函数 (zero function) は、変数の値によらず函数値が常に零となるような函数を言う。より一般に、線型代数学におけるベクトル空間の間の零(線型)写像 (zero map) または零(線型)作用素 (zero operator) は、全てのベクトルを零ベクトルに写す。 零写像は多くの性質を満足し、数学において例や反例としてしばしば用いられる。零写像は斉次線型微分方程式や積分方程式などの数学の一連の問題において、自明なになる。.

新しい!!: ノルムと零写像 · 続きを見る »

電荷密度

電荷密度(でんかみつど、charge density)は、単位体積当たりの電荷の分布量(体積密度)。電荷を担うものとしては電子や原子核、イオンのような粒子(素粒子や正孔などを含む)であったり、仮想的に一様に分布する電荷のような場合(→参照:ジェリウムモデル)もある。 金属や半導体では、電荷密度は0と近似できる。 実験的にはX線回折実験による構造解析から得られた結果を最大エントロピー法などを使って実空間での電子の電荷分布(→電子密度に相当)が求まる。また中性子回折実験の結果から同様な手法により原子核の密度が求まる。.

新しい!!: ノルムと電荷密度 · 続きを見る »

速さの比較

本項では、速さの比較(はやさのひかく)ができるよう、昇順に表にする。 速さはスカラー量であり、「ベクトル量である速度の大きさ」と定義される。速さと速度の違いについては、速度#速度と速さをも参照のこと。.

新しい!!: ノルムと速さの比較 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: ノルムと連続 (数学) · 続きを見る »

G.719

G.719 は ITU-T が勧告したフルバンドの高音質会話アプリケーション用の音声とオーディオ用の符号化方式で、20 Hz-20 kHz までのフルバンドの音声/オーディオ信号を 32 kbps から 128 kbps に符号化でき、処理に必要な演算量が低い特徴があるITU-T Recommendation G.719 (06/2008), Low-complexity, full-band audio coding for high-quality, conversational applications.

新しい!!: ノルムとG.719 · 続きを見る »

GNS表現

作用素代数や数理物理学において、GNS表現(-ひょうげん、GNS representation)、またはGelfand-Naimark-Segal表現とは、C*-代数に対し、状態と呼ばれる正値線形汎関数が与えられたときに、ヒルベルト空間上の有界作用素による表現を構成する手法H.

新しい!!: ノルムとGNS表現 · 続きを見る »

GNS構成法

作用素代数において、GNS構成法(-こうせいほう、GNS construction)、またはGelfand–Naimark–Segal構成法とはC*-代数に状態と呼ばれる線形汎関数が与えられたときに、巡回表現と呼ばれる特別な表現を構成する方法。GNSの語は考案者である3人の数学者Gelfand、Naimark、Segalの頭文字に由来する。場の量子論や量子統計力学では、ヒルベルト空間を離れ、物理量のなす代数のみから理論を構築してもGNS構成法により、全ての物理量の期待値が与えられたときに、逆にヒルベルト空間とその上の作用による物理量の表現を構成することができる。自由度が無限大である系では、当初に設定した空間を飛び出さねばならないことが多い。このときGNS構成法を用いれば、新しいヒルベルト空間を作ることができる。.

新しい!!: ノルムとGNS構成法 · 続きを見る »

H∞制御理論

H^\infty制御理論(エイチインフィニティせいぎょりろん、英語:H-infinity control theory)は、外乱信号の影響を抑制する制御系を構築するための制御理論である。この制御理論は、1980年代に研究が進み、1989年頃に完成した。H^\inftyノルムと呼ばれるノルムによって伝達関数を評価し、それが所望の値より小さくなるようにすることにより、目的の性能を達成させる。具体的には、一般化プラントと呼ばれる制御入力、外乱入力、制御出力、評価出力の 4 つの入出力を持つ汎用的な制御モデルを対象に、制御出力から制御入力に適切なフィードバックを施すことで外乱入力から評価出力までの伝達関数の H∞ノルムを小さくするという制御系設計手順を取る。制御対象の不確定な部分を外乱信号として扱うことで、モデルの不確かさの影響を抑制する制御系となる。このように、想定していたモデル(ノミナルモデルと呼ぶ)からの誤差に対しても有効な(安定性を失わない) 性質をロバスト性(堅牢性、安定性)と呼ぶ。 それまでの現代制御論はモデルが正確であることを前提としていたため、モデル化誤差のあるシステムに対して性能を保証しなかったが、H∞制御はロバスト性により多少いいかげんな同定でも許されるようになったこと、周波数領域での設計ができるようになったために古典制御に慣れた技術者が容易に設計できることなどから、産業界で積極的に採り入れられ、理論と現場の距離を縮めたと言われている。.

新しい!!: ノルムとH∞制御理論 · 続きを見る »

ISO 80000-2

ISO 80000-2:2009 は、数学記号について定義している国際規格である。国際標準化機構 (ISO) と国際電気標準会議 (IEC) が共同で発行している ISO/IEC 80000 の一部として、ISO によって2009年に発行された。 ISO 80000-2 は、それまでの数学記号についての規格であった ISO 31-11 を置き替えるものである。 日本工業規格 (JIS) では、 JIS Z 8201 が相当するが、数理論理学や集合の記号が記載されてないなど、内容は一部異なる。ISO/IEC 80000 の他の部は JIS Z 8000 が相当するが、ISO 80000-2 に相当する部分は JIS Z 8201 を参照することとなっているため、JIS Z 8000 は第2部が欠番になっている。JIS Z 8201 は1953年に制定され、 ISO 31-11:1978 を元に1981年に改定されたものであるが、ISO 80000-2 が発行されても、2016年現在、JIS Z 8201 は改訂されていない。.

新しい!!: ノルムとISO 80000-2 · 続きを見る »

Lp空間

数学の分野における Lp 空間(エルピーくうかん、Lp space)とは、有限次元ベクトル空間に対する p-ノルムの自然な一般化を用いることで定義される関数空間である。アンリ・ルベーグの名にちなんでルベーグ空間としばしば呼ばれる が、 によると初めて導入されたのは とされている。Lp 空間は関数解析学におけるバナッハ空間や、線型位相空間の重要なクラスを形成する。物理学や統計学、金融、工学など様々な分野で応用されている。.

新しい!!: ノルムとLp空間 · 続きを見る »

LTIシステム理論

LTIシステム理論(LTI system theory)は、電気工学、特に電気回路、信号処理、制御理論といった分野で、線型時不変系(linear time-invariant system)に任意の入力信号を与えたときの応答を求める理論である。通常、独立変数は時間だが、空間(画像処理や場の古典論など)やその他の座標にも容易に適用可能である。そのため、線型並進不変(linear translation-invariant)という用語も使われる。離散時間(標本化)系では対応する概念として線型シフト不変(linear shift-invariant)がある。.

新しい!!: ノルムとLTIシステム理論 · 続きを見る »

概周期函数

数学における概周期函数(がいしゅうきかんすう、)とは、大雑把に言うと、適切に長く well-distributed な「概周期」が与えられた際、任意の正確さのもとで周期的であるような実数函数のことを言う。この概念はハラルト・ボーアによって初めて研究され、、ヘルマン・ワイル、やその他の研究者によって一般化された。局所コンパクトアーベル群上の概周期函数の概念は、ジョン・フォン・ノイマンによって初めて研究された。 概周期性(almost periodicity)は、位相空間に沿った力学系の経路を(正確ではないが)逆に辿る際に現れる性質である。一例として、尽数関係にない周期で動く軌道上の惑星(すなわち、整数ベクトルに比例しない周期ベクトル)を伴う惑星系が挙げられる。ディオファントス近似に現れるクロネッカーの定理によると、一度現れた任意の特定の形状は、任意の特定の精度のもとで再び現れる。すなわち、十分長く待てば、すべての惑星は 1 秒 (角度)の間にかつて元いた位置に戻ることが分かる。.

新しい!!: ノルムと概周期函数 · 続きを見る »

正則化

正則化(せいそくか、regularization)とは、数学・統計学において、特に機械学習と逆問題でよく使われるが、機械学習で過学習を防いだり、逆問題での不良設定問題を解くために、追加の項を導入する手法である。モデルの複雑さに罰則を科すために導入され、なめらかでないことに罰則をかけたり、パラメータのノルムの大きさに罰則をかけたりする。 正則化の理論的正当化はオッカムの剃刀にある。ベイジアンの観点では、多くの正則化の手法は、モデルのパラメータの事前情報にあたる。.

新しい!!: ノルムと正則化 · 続きを見る »

正規直交基底

数学において、特に線型代数学において、有限次元内積空間 V の正規直交基底(せいきちょっこうきてい、orthonormal basis)とは、正規直交系を成すような V の基底をいう。例えば、ユークリッド空間 Rn の標準基底は、ベクトルの点乗積を内積としての正規直交基底である。また、標準基底の回転や鏡映(一般に任意の直交変換)による像もまた正規直交基底であり、なおかつ Rn の任意の正規直交基底はこの方法で得られる。 一般の内積空間 V に対して、その正規直交基底は V 上の正規化された直交座標系を定めるのに利用できる。そのような座標系のもとでは内積をベクトルの点乗積と同一視することができるから、正規直交基底の存在については(一般の有限次元内積空間を調べるのではなくて)点乗積を伴う Rn の場合を調べれば十分である。従って任意の有限次元内積空間は正規直交基底を持つが、実際にこれを得るには任意の基底にグラム・シュミットの正規直交化法を用いればよい。 函数解析学では、正規直交基底の概念を一般の(必ずしも有限次元でない)内積空間(前ヒルベルト空間)に対しても定義することができる。前ヒルベルト空間 H が与えられたとき、H の正規直交基底とは、H の正規直交系であって、H を位相的に生成するものをいう。即ち、H の各ベクトルが、基底に属するベクトルの''無限''線型結合として一意に表される。この場合の正規直交基底を、H のヒルベルト基底と呼ぶこともある。この意味での正規直交基底は、無限線型結合を用いることから、一般にはベクトル空間としての基底(ハメル基底)でないことに注意すべきである。よりはっきり述べれば、正規直交基底によって張られる部分空間(正規直交基底に属するベクトルの有限線型結合全体)は全空間 H において稠密ではあるが、全空間 H に一致するとは限らない。.

新しい!!: ノルムと正規直交基底 · 続きを見る »

正規直交系

数学、特に線型代数学並びに関数解析学において正規直交系(せいきちょっこうけい、orthonormal system)とは、互いに直交して(内積が 0 であり)、かつその大きさが規格化されて 1 であるベクトルの集まりである。ONSとも表される。特に、正規直交系が完全系(任意のベクトルが正規直交系によって展開可能)である場合には、完全正規直交系(complete orthonormal system)または正規直交基底と呼ばれ、CONSと表される。ヒルベルト空間論の基礎的な概念であるとともに、正規直交系に基づく展開原理は物理学、工学への応用において重要となる。.

新しい!!: ノルムと正規直交系 · 続きを見る »

法線ベクトル

法線ベクトル(ほうせんベクトル、normal vector)は、2次元ではある線に垂直なベクトル、3次元ではある面に垂直なベクトル。法線(ほうせん、normal)はある接線に垂直な線のことである。.

新しい!!: ノルムと法線ベクトル · 続きを見る »

準ノルム

数学の線型代数学や函数解析および関連する分野における準ノルム(じゅんノルム、)とは、ノルムと類する概念であり、三角不等式を除いたノルムの公理を満たす。また三角不等式の成立は、ある K > 1 に対する不等式 の成立に置き換えられる。半ノルムや擬ノルムとは異なる概念である(それらでは正定値性のみが満たされない)。.

新しい!!: ノルムと準ノルム · 続きを見る »

準ニュートン法

準ニュートン法 (英: quasi-Newton method)とは、非線形連立方程式の解、あるいは連続最適化問題の関数の極大・極小解を見つけるためのアルゴリズムである。準ニュートン法はニュートン法を元にしており、非線形連立方程式の解を求めることが基本になるが、最適化問題においては、関数の停留点を見つけるために、関数の勾配.

新しい!!: ノルムと準ニュートン法 · 続きを見る »

有界変動函数

解析学における有界変動の函数(ゆうかいへんどうのかんすう、fonction of bounded variation)あるいは有界変動函数(-function; BV函数)は、その変動が有界、すなわちが有限値となるような実数値函数を言う。この性質は函数のグラフが以下に述べる意味において素性のよい (well behaved) ものであることを述べるものである。話を一変数の連続函数に限定すれば、有界変動であることはその連続函数のグラフ上を奔る動点の(方向への寄与分は無視して)方向への移動距離が有限であることを意味する。多変数の連続函数の場合にもこれは同様の意味を持つのであるが、考えるべき動点の辿る連続な路としては、与えられた函数のグラフ全体(今の場合これは超曲面になる)を取ることができないという事実があるので、函数のグラフと固定された -軸および -軸に平行な任意の超平面との交叉を取る必要がある。.

新しい!!: ノルムと有界変動函数 · 続きを見る »

有界作用素

数学(関数解析学)において、有界(線形)作用素(ゆうかいさようそ、)とは、二つのノルム空間 X および Y の間の線形変換 L であって、X に含まれるゼロでないすべてのベクトル v に対して L(v) のノルムと v のノルムの比が、v に依存しない一つの数によって上から評価されるようなもののことを言う。言い換えると、次を満たす線形変換 L のことを、有界作用素と言う: ここで \|\cdot\|_X は X が備えるノルムである( \|\cdot\|_Y も同様).上記の正定数 M のうち最小のもの(下限)は L の作用素ノルムと呼ばれ、\|L\|_ \, と記述される。 X から Y への有界作用素全体の集合を \mathcal(X,Y) として,L \in \mathcal(X,Y) に対して \|L\|_ によって作用素ノルムを表すこともある. 一般的に、有界作用素は有界関数ではない。後者は、すべての v に対し L(v) のノルムが上から評価されている必要があるが、これは Y がゼロベクトル空間でないと起こり得ない。有界作用素はである。 線形作用素が有界であることと、連続であることは必要十分である。.

新しい!!: ノルムと有界作用素 · 続きを見る »

有界入力有界出力安定性

有界入力有界出力安定性(ゆうかいにゅうりょくゆうかいしゅつりょくあんていせい、Bounded-Input Bounded-Output Stability)またはBIBO安定性(BIBO Stability)は、信号処理や制御理論における信号やシステムの安定性の一形態である。システムがBIBO安定であるとは、有限な入力を与えられたとき、常に有限な出力となることをいう。 ある有限値 B > 0 があり、信号の振幅が B を決して超えない場合、その信号は有限(有界)である。すなわち、.

新しい!!: ノルムと有界入力有界出力安定性 · 続きを見る »

有界級数空間

数学の函数解析学の分野における有界級数(ゆうかいきゅうすう、bounded series)の空間 は、その部分和(; 有限級数)の列が有界 となるような実または複素無限数列全体の成す数列空間として \mathit.

新しい!!: ノルムと有界級数空間 · 続きを見る »

有界逆写像定理

数学の分野における有界逆写像定理(ゆうかいぎゃくしゃぞうていり、)は、バナッハ空間上の有界線形作用素の理論における一つの結果で、あるバナッハ空間から別のバナッハ空間への全単射な有界線形作用素 T には有界な逆 T−1 が存在する、ということを述べた定理である。開写像定理や閉グラフ定理と同値である。 ここで考える空間はバナッハ空間でなければならない。反例として、ゼロでない成分が有限個であるような数列 x: N → R からなる空間 X を考える(そのノルムは上限ノルムで与えられるものとする)。作用素 T: X → X を で定義すると、これは有界、線形、可逆であるが T−1 は非有界となる。しかしこれは有界逆写像定理とは矛盾しない。なぜならば X は完備でなく、したがってバナッハ空間ではないからである。実際に完備でないことを確かめるために、 によって与えられる数列 x(n) ∈ X からなる列を考える。それは n → ∞ に対して数列 へと収束するが、この(無限個の)全ての成分がゼロでないため、これは X には含まれない。したがって X は完備ではない。 X の完備化は、ゼロに収束するような全ての数列からなる空間 c_0 である(この空間は、全ての有界数列からなるようなℓ''p''空間 ℓ∞(N) の(閉)部分空間である)。この場合、作用素 T が全射でなく、したがって全単射ではない。このことを確かめるための簡単な例を挙げる。数列 は c_0 の元であるが、T:c_0\to c_0 の値域には含まれない。したがって T は全射ではない。.

新しい!!: ノルムと有界逆写像定理 · 続きを見る »

有限要素法

有限要素法(ゆうげんようそほう、Finite Element Method, FEM)は数値解析手法の一つ。解析的に解くことが難しい微分方程式の近似解を数値的に得る方法の一つである。方程式が定義された領域を小領域(要素)に分割し、各小領域における方程式を比較的単純で共通な補間関数で近似する。構造力学分野で発達し、他の分野でも広く使われている手法。その背景となる理論は、関数解析と結びついて、数学的に整然としている。.

新しい!!: ノルムと有限要素法 · 続きを見る »

最小二乗法

データセットを4次関数で最小二乗近似した例 最小二乗法(さいしょうにじょうほう、さいしょうじじょうほう;最小自乗法とも書く、)は、測定で得られた数値の組を、適当なモデルから想定される1次関数、対数曲線など特定の関数を用いて近似するときに、想定する関数が測定値に対してよい近似となるように、残差の二乗和を最小とするような係数を決定する方法、あるいはそのような方法によって近似を行うことである。.

新しい!!: ノルムと最小二乗法 · 続きを見る »

方向微分

数学において、多変数微分可能関数のある与えられた点 x におけるある与えられたベクトル v に沿った方向微分(ほうこうびぶん、)とは、直感的には、v によって特徴づけられた速度で x を通過する時の、その関数の即時的な変化率を意味する。したがって、他のすべての座標は定数として、ある一つのに沿った変化率を取るような、偏微分の概念を一般化するものである。 方向微分は、ガトー微分の特別な場合である。.

新しい!!: ノルムと方向微分 · 続きを見る »

方正函数

数学における方正函数(ほうせいかんすう、regulated function, ruled function)は「素性のよい」("well-behaved") 実一変数の函数である。方正函数の概念は可積分函数の一つのクラスとして生じたものであり、その特徴付けにはいくつか方法がある。方正函数は1954年にが導入し、対応する積分をジャン・デュドネを含む数学結社ブルバキが提唱した。.

新しい!!: ノルムと方正函数 · 続きを見る »

擬距離空間

数学の分野における擬距離空間(ぎきょりくうかん、)とは、異なる二点の間の距離がゼロとなることもあるように一般化された距離空間である。すべてのノルム空間が距離空間であるように、すべての半ノルム空間は擬距離空間である。このことから、半距離空間(位相空間論における意味とは異なる)という語が、特に関数解析学の分野において、擬距離空間の同義語として用いられることがある。 擬距離の族によって位相が生成される時、その空間はと呼ばれる。.

新しい!!: ノルムと擬距離空間 · 続きを見る »

放射基底関数

において、各々適当な点に関して球対称となる実数値函数からなる基底を考えるとき、各基底函数は放射基底関数(radial basis function、RBF、動径基底関数)と呼ばれる。一般に、函数 が動径函数あるいは球対称 (radial) であるとは、, すなわちその値が偏角成分に依存せず動径成分(つまり原点からの距離)のみに依存して決まることを言う。従って動径基底函数は適当な点 を中心として、 からの距離のみに依存して決まる。ここで、ノルムはふつうユークリッド距離で考えるが、べつの距離函数を取ることもできる。 動径基底函数の和としての近似の過程は、単純な種類のニューラルネットワークとしても解釈することができる。これはもともとは David Broomhead と David Lowe による1988年の結果(これは1977年に始まるMichael J. D. Powell の独創的な研究: "We would like to thank Professor M.J.D. Powell at the Department of Applied Mathematics and Theoretical Physics at Cambridge University for providing the initial stimulus for this work.": "We would like to thank Professor M.J.D. Powell at the Department of Applied Mathematics and Theoretical Physics at Cambridge University for providing the initial stimulus for this work."-->に由来する)によって表面化した文脈に属する。 動径基底函数はサポートベクターマシンにおけるとしても用いられる。.

新しい!!: ノルムと放射基底関数 · 続きを見る »

放射非有界函数

数学において放射非有界函数(ほうしゃひゆうかいかんすう、)とは、次が成り立つ函数 f: \mathbb^n \rightarrow \mathbb のことをいう: このような函数は制御理論において利用され、コンパクト空間を決定する最適化のために必要となる。 この定義に現れるノルムは \mathbb^n 上の任意のノルムでよく、軸に沿った函数の挙動のみで放射非有界かどうかが明らかにされるとは限らないことに注意されたい。すなわち、放射非有界であるためには上の条件が であるような任意の経路に沿って確かめられる必要がある。例えば、次のような函数 は放射非有界ではない。実際、直線 x_1.

新しい!!: ノルムと放射非有界函数 · 続きを見る »

数学記号の表

数学的概念を記述する記号を数学記号という。数学記号は、数学上に抽象された概念を簡潔に表すためにしばしば用いられる。 数学記号が示す対象やその定義は、基本的にそれを用いる人に委ねられるため、一見して同じ記号であっても内容が異なっていたり、逆に異なる記号であっても、同じ対象を示していることがある数学においては、各々の記号はそれ単独では「意味」を持たないものと理解される。それらは常に、数式あるいは論理式として文脈(時には暗黙のうちに掲げられている、前提や枠組み)に即して評価をされて初めて、値として意味を生じるのである。ゆえにここに掲げられる意味は慣用的な一例に過ぎず絶対ではないことに事前の了解が必要である。記号の「読み」は記号の見た目やその文脈における意味、あるいは記号の由来(例えばエポニム)など便宜的な都合(たとえば、特定のグリフをインプットメソッドを通じてコードポイントを指定して利用するために何らかの呼称を与えたりすること)などといったものに従って生じるために、「記号」と「読み」との間には相関性を見いだすことなく分けて考えるのが妥当である。。従って本項に示す数学記号とそれに対応する数学的対象は、数多くある記号や概念のうち、特に慣用されうるものに限られる。.

新しい!!: ノルムと数学記号の表 · 続きを見る »

数列空間

関数解析学および関連する数学の分野における数列空間(すうれつくうかん、)とは、実数あるいは複素数の無限列を元とするベクトル空間のことを言う。またそれと同値であるが、自然数から実あるいは複素数体 K への関数を元とする関数空間のことでもある。そのような関数すべてからなる集合は、K に元を持つ無限列すべてからなる集合であると自然に認識され、関数の点ごとの和および点ごとのスカラー倍の作用の下で、ベクトル空間と見なされる。すべての数列空間は、この空間の線型部分空間である。通常、数列空間はノルムを備えるものであり、そうでなくとも少なくとも位相ベクトル空間の構造を備えている。 解析学におけるもっとも重要な数列空間のクラスは、p-乗総和可能数列からなる関数空間 ℓp である。それらの空間は p-ノルムを備え、自然数の集合上の数え上げ測度に対するL''p''空間の特別な場合と見なされる。収束列や零列のような他の重要な数列のクラスも数列空間を構成し、それらの場合はそれぞれ c および c0 と表記され、上限ノルムが備えられる。任意の数列空間は各点収束の位相を備えるものでもあり、その位相の下でのそれらの空間は、と呼ばれるフレシェ空間の特殊な場合となる。.

新しい!!: ノルムと数列空間 · 続きを見る »

ここにリダイレクトされます:

ユークリッドノルムノルム同値

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »