ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

超重力理論と量子重力理論

ショートカット: 違い類似点ジャカード類似性係数参考文献

超重力理論と量子重力理論の違い

超重力理論 vs. 量子重力理論

超重力理論(ちょうじゅうりょくりろん)とは、一般相対論を超対称化した理論、言い方を変えれば局所超対称性の理論である。量子化した際は、単なる一般相対論より紫外発散が弱くなるため、量子重力理論の文脈において1980年代初頭に精力的に研究された。超対称性のゲージ理論と考えることもできる。対応するゲージ場がグラヴィティーノである。. 量子重力理論(りょうしじゅうりょくりろん、)は、重力相互作用(重力)を量子化した理論である。単に量子重力(りょうしじゅうりょく:Quantum Gravity(QG), Quantum Gravitation)または重力の量子論(Quantum Theory of Gravity)などとも呼ばれる。 ユダヤ系ロシア人のマトベイ・ブロンスタインがパイオニアとされる。一般相対性理論と量子力学の双方を統一する理論と期待されている。物理学の基礎概念である時間、空間、物質、力を統一的に理解するための鍵であり、物理学における最重要課題の一つと言われている。 量子重力理論は現時点ではまったく未完成の未知の理論である。量子重力を考える上で最大の問題点はその指針とすべき基本的な原理がよく分かっていないということである。そもそも重力は自然界に存在する四つの力(基本相互作用)の中で最も弱い。従って、量子化された重力が関係していると考えられる現象が現在到達できる技術レベルでは観測できないためである。.

超重力理論と量子重力理論間の類似点

超重力理論と量子重力理論は(ユニオンペディアに)共通で11ものを持っています: AdS/CFT対応一般相対性理論ブラックホールゲージ理論スピン角運動量繰り込み超対称性理論超弦理論重力子量子化M理論

AdS/CFT対応

論物理学では、AdS/CFT対応(AdS/CFTたいおう、anti-de Sitter/conformal field theory correspondence)は、マルダセーナ双対(Maldacena duality)あるいはゲージ/重力双対(gauge/gravity duality)とも呼ばれ、2つの物理理論の種類の間の関係を予言するものである。対応の片側は、共形場理論 (CFT) で、場の量子論で基本粒子を記述するヤン=ミルズ理論の類似物を意味し、対応する反対側は、反ド・ジッター空間(AdS)で、量子重力の理論で使われる空間である。この対応は弦理論やM-理論のことばで定式化された。 双対性は、弦理論と量子重力の理解の主要な発展の現れである。この理由は、双対性がある境界条件を持つ弦理論の(non-perturbative)な定式化であるからであり、注目を浴びている量子重力のアイデアのホログラフィック原理を最もうまく実現しているからである。ホログラフィック原理は、もともとジェラルド・トフーフトが提唱し、レオナルド・サスキンドにより改善されている。 加えて、の場の量子論の研究への強力なツールを提供している。 双対性の有益さの大半は、強弱双対性から来ている。つまり、場の量子論が強い相互作用である場合に、重力理論の側は弱い相互作用であるので、数学的に取り扱い易くなっている。この事実は、強結合の理論を強弱対称性により数学的に扱い易い弱結合の理論に変換することにより、原子核物理学や物性物理学での多くの研究に使われてきている。 AdS/CFT対応は、最初に1997年末、フアン・マルダセナにより提起された。この対応の重要な面は、、、アレクサンドル・ポリヤコフの論文や、エドワード・ウィッテンの論文により精査された。2014にはマルダセナの論文の引用は10000件を超え、高エネルギー物理学の分野の最も多く引用される論文となっている。.

AdS/CFT対応と超重力理論 · AdS/CFT対応と量子重力理論 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

一般相対性理論と超重力理論 · 一般相対性理論と量子重力理論 · 続きを見る »

ブラックホール

ブラックホール(black hole)とは、極めて高密度かつ大質量で、強い重力のために物質だけでなく光さえ脱出することができない天体である。.

ブラックホールと超重力理論 · ブラックホールと量子重力理論 · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

ゲージ理論と超重力理論 · ゲージ理論と量子重力理論 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

スピン角運動量と超重力理論 · スピン角運動量と量子重力理論 · 続きを見る »

繰り込み

繰り込み(くりこみ)とは、場の量子論で使われる、計算結果が無限大に発散してしまうのを防ぐ数学的な技法であり、同時に場の量子論が満たすべき最重要な原理のひとつでもある。 くりこみにより、場の量子論を電磁相互作用に適用した量子電磁力学が完成した。場の量子論にくりこみを用いる方法は、以後の量子色力学およびワインバーグ・サラム理論を構築する際の規範となる。.

繰り込みと超重力理論 · 繰り込みと量子重力理論 · 続きを見る »

超対称性理論

超対称性理論(ちょうたいしょうせいりろん)とは、理論のボース粒子とフェルミ粒子に対して、それぞれ対応するフェルミ粒子とボース粒子(超対称性粒子)が存在すると考える理論、仮説のこと。ボース粒子とフェルミ粒子を入れ替える数学的変換を超対称変換と呼び、特にゲージ粒子に対しても超対称性粒子を考える理論の事を超対称ゲージ理論と呼ぶ。また、超対称性を考えた標準模型や重力理論(一般相対論)は、それぞれ超対称標準模型、超重力理論と呼ばれる。超弦理論も超対称性理論の一種である。 もし超対称性が自然界で近似としてではなく実現されているならば、現在までに知られている各素粒子に、その対となる同質量の超対称粒子が存在する。すなわち、素粒子の数が既知のものから倍増するはずである。しかしながら、現在、超対称粒子はひとつも実験的に発見されていない。2008年に稼動予定のLHC実験計画は、この超対称粒子の発見を目的のひとつとして推進されている。.

超対称性理論と超重力理論 · 超対称性理論と量子重力理論 · 続きを見る »

超弦理論

ラビ-ヤウ空間 超弦理論(ちょうげんりろん、)は、物理学の理論、仮説の1つ。物質の基本的単位を、大きさが無限に小さな0次元の点粒子ではなく、1次元の拡がりをもつ弦であると考える弦理論に、超対称性という考えを加え、拡張したもの。超ひも理論、スーパーストリング理論とも呼ばれる。 宇宙の姿やその誕生のメカニズムを解き明かし、同時に原子、素粒子、クォークといった微小な物のさらにその先の世界を説明する理論の候補として、世界の先端物理学で活発に研究されている理論である。この理論は現在、理論的な矛盾を除去することには成功しているが、なお不完全な点を指摘する専門家もおり、また実験により検証することが困難であろうとみなされているため、物理学の定説となるまでには至っていない。.

超弦理論と超重力理論 · 超弦理論と量子重力理論 · 続きを見る »

重力子

重力子(じゅうりょくし、graviton、グラビトン)は、素粒子物理学における四つの力のうちの重力相互作用を伝達する役目を担わせるために導入される仮説上の素粒子。2016年までのところ未発見である。 アルベルト・アインシュタインの一般相対性理論より導かれる重力波を媒介する粒子として提唱されたものである。スピン2、質量0、電荷0、寿命無限大のボース粒子であると予想され、力を媒介するゲージ粒子である。.

超重力理論と重力子 · 重力子と量子重力理論 · 続きを見る »

量子化

量子化(りょうしか、quantization)とは、ある物理量が量子の整数倍になること、あるいは整数倍にする処理のこと。.

超重力理論と量子化 · 量子化と量子重力理論 · 続きを見る »

M理論

M理論(Mりろん)とは、現在知られている5つの超弦理論を統合するとされる、11次元(空間次元が10個、時間次元が1個)の仮説理論である。尚、この理論には弦は存在せず、2次元の膜(メンブレーン)や5次元の膜が構成要素であると考えられている。.

M理論と超重力理論 · M理論と量子重力理論 · 続きを見る »

上記のリストは以下の質問に答えます

超重力理論と量子重力理論の間の比較

量子重力理論が43を有している超重力理論は、21の関係を有しています。 彼らは一般的な11で持っているように、ジャカード指数は17.19%です = 11 / (21 + 43)。

参考文献

この記事では、超重力理論と量子重力理論との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »