ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

超伝導と電気抵抗

ショートカット: 違い類似点ジャカード類似性係数参考文献

超伝導と電気抵抗の違い

超伝導 vs. 電気抵抗

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。. 電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

超伝導と電気抵抗間の類似点

超伝導と電気抵抗は(ユニオンペディアに)共通で7ものを持っています: ヘイケ・カメルリング・オネスオームオームの法則ケルビン絶縁体金属温度

ヘイケ・カメルリング・オネス

ヘイケ・カマリン・オンネス(Heike Kamerlingh Onnes, 1853年9月21日-1926年2月21日) はオランダの物理学者である。日本ではカーメルリング・オンネス、カマリン・オンネス、カマリン・オネスなど様々にカナ表記されている。ヘリウムの液化に成功、超伝導の発見など、低温物理学の先駆者として知られている。1913年にノーベル物理学賞を受賞した。.

ヘイケ・カメルリング・オネスと超伝導 · ヘイケ・カメルリング・オネスと電気抵抗 · 続きを見る »

オーム

ーム()は、インピーダンスや電気抵抗(レジスタンス)、リアクタンスの単位である。国際単位系 における組立単位のひとつである。 名称は、電気抵抗に関するオームの法則を発見したドイツの物理学者、ゲオルク・ジーモン・オームにちなむ。記号はギリシャ文字のオメガ ('''Ω''') を用いる。これは、オームの頭文字であるアルファベットのO(オー)では、数字の0(ゼロ)と混同されやすいからである(なお、オームの名前をギリシャ文字で表記するとΓκέοργκ Ωμとなる)。 電気抵抗を表すための単位は、初期の電信業務に関連して経験的にいくつか作られてきた。1861年にが、質量・長さ・時間の単位から組み立てた実用上便利な大きさの単位としてオームを提唱した。オームの定義はその後何度か修正された。.

オームと超伝導 · オームと電気抵抗 · 続きを見る »

オームの法則

ルク・オーム オームの法則(オームのほうそく、)とは、導電現象において、電気回路の部分に流れる電流とその両端の電位差の関係を主張する法則である。クーロンの法則とともに電気工学で最も重要な関係式の一つである。 1781年にヘンリー・キャヴェンディッシュが発見したが、その業績は1879年にマクスウェルが『ヘンリー・キャヴェンディシュ電気学論文集』として出版するまで未公表であった。 ヘンリーの最初の発見後、1826年にドイツの物理学者であるゲオルク・オームによって再発見・公表されたため、その名を冠してオームの法則と呼ばれる。.

オームの法則と超伝導 · オームの法則と電気抵抗 · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

ケルビンと超伝導 · ケルビンと電気抵抗 · 続きを見る »

絶縁体

絶縁体(ぜつえんたい、insulator)は、電気あるいは熱を通しにくい性質を持つ物質の総称である。.

絶縁体と超伝導 · 絶縁体と電気抵抗 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

超伝導と金属 · 金属と電気抵抗 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

温度と超伝導 · 温度と電気抵抗 · 続きを見る »

上記のリストは以下の質問に答えます

超伝導と電気抵抗の間の比較

電気抵抗が75を有している超伝導は、74の関係を有しています。 彼らは一般的な7で持っているように、ジャカード指数は4.70%です = 7 / (74 + 75)。

参考文献

この記事では、超伝導と電気抵抗との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »