ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

論理回路と選言標準形

ショートカット: 違い類似点ジャカード類似性係数参考文献

論理回路と選言標準形の違い

論理回路 vs. 選言標準形

論理回路(ろんりかいろ、logic circuit)は、論理演算を行う電気回路及び電子回路である。真理値の「真」と「偽」、あるいは二進法の「0」と「1」を、電圧の正負や高低、電流の方向や多少、位相の差異、パルスなどの時間の長短、などで表現し、論理素子などで論理演算を実装する。電圧の高低で表現する場合それぞれを「」「」等という。基本的な演算を実装する論理ゲートがあり、それらを組み合わせて複雑な動作をする回路を構成する。状態を持たない組み合わせ回路と状態を持つ順序回路に分けられる。論理演算の結果には、「真」、「偽」の他に「不定」がある。ラッチ回路のdon't care, フリップフロップ回路の禁止が相当する。 ここでの論理は離散(digital)であるためディジタル回路を用いる。論理演算を行うアナログ回路、「アナログ論理」を扱う回路(どちらも「アナログ論理回路」)もある。 多値論理回路も量子コンピュータで注目されている。 電気(電子)的でないもの(たとえば流体素子や光コンピューティングを参照)もある。 以下では離散なデジタル回路を扱う。. 選言標準形(せんげんひょうじゅんけい、Disjunctive normal form, DNF)は、数理論理学においてブール論理での論理式の標準化(正規化)の一種であり、連言節(AND)の選言(OR)の形式で論理式を表す。加法標準形、主加法標準形、積和標準形とも呼ぶ。正規形としては、自動定理証明で利用されている。.

論理回路と選言標準形間の類似点

論理回路と選言標準形は(ユニオンペディアに)共通で6ものを持っています: ブール論理ブール関数真理値表論理式連言標準形数理論理学

ブール論理

ブール論理(ブールろんり、Boolean logic)は、古典論理のひとつで、その名称はブール代数ないしその形式化を示したジョージ・ブールに由来する。 リレーなどによる「スイッチング回路の理論」として1930年代に再発見され(論理回路#歴史を参照)、間もなくコンピュータに不可欠な理論として広まり、こんにちでは一般的に使われている。 本項目では、集合代数を用いて、集合、ブール演算、ベン図、真理値表などの基本的解説とブール論理の応用について解説する。ブール代数の記事ではブール論理の公理を満足する代数的構造の型を説明している。ブール論理はブール代数で形式化され2値の意味論を与えられた命題論理とみることができる。.

ブール論理と論理回路 · ブール論理と選言標準形 · 続きを見る »

ブール関数

ブール関数(ブールかんすう、Boolean function)は、非負整数 k 個のブール領域 B.

ブール関数と論理回路 · ブール関数と選言標準形 · 続きを見る »

真理値表

真理値表(しんりちひょう、Truth table)は、論理関数の、入力の全てのパターンとそれに対する結果の値を、表にしたものである。 例1:命題Pの否定「\lnot P」の場合、以下のような真理値表になる。 例2:2つの命題P,Qの論理和「P \lor Q」の場合、以下のような真理値表になる。 例3:2つの命題P,Qの論理積「P \land Q」の場合、以下のような真理値表になる。 なお、この表では「真」「偽」として表記してあるが、「T(.

真理値表と論理回路 · 真理値表と選言標準形 · 続きを見る »

論理式

論理式.

論理回路と論理式 · 論理式と選言標準形 · 続きを見る »

連言標準形

連言標準形(れんげんひょうじゅんけい、Conjunctive normal form, CNF)は、数理論理学においてブール論理における論理式の標準化(正規化)の一種であり、選言節の連言の形式で論理式を表す。乗法標準形、主乗法標準形、和積標準形とも呼ぶ。正規形としては、自動定理証明で利用されている。.

論理回路と連言標準形 · 連言標準形と選言標準形 · 続きを見る »

数理論理学

数理論理学(mathematische Logik、mathematical logic)は、論理学(形式論理学)の数学への応用の探求ないしは論理学の数学的な解析を主たる目的とする、数学の関連分野である。局所的には数理論理学は超数学、数学基礎論、理論計算機科学などと密接に関係している。数理論理学の共通な課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくに)における数理論理学の役割の詳細はこの記事には含まれていない。詳細はを参照。 この分野が始まって以来、数理論理学は数学基礎論の研究に貢献し、また逆に動機付けられてきた。数学基礎論は幾何学、算術、解析学に対する公理的な枠組みの開発とともに19世紀末に始まった。20世紀初頭、数学基礎論は、ヒルベルトのプログラムによって、数学の基礎理論の無矛盾性を証明するものとして形成された。クルト・ゲーデルとゲルハルト・ゲンツェンによる結果やその他は、プログラムの部分的な解決を提供しつつ、無矛盾性の証明に伴う問題点を明らかにした。集合論における仕事は殆ど全ての通常の数学を集合の言葉で形式化できることを示した。しかしながら、集合論に共通の公理からは証明することができない幾つかの命題が存在することも知られた。むしろ現代の数学基礎論では、全ての数学を展開できる公理系を見つけるよりも、数学の一部がどのような特定の形式的体系で形式化することが可能であるか(逆数学のように)ということに焦点を当てている。.

数理論理学と論理回路 · 数理論理学と選言標準形 · 続きを見る »

上記のリストは以下の質問に答えます

論理回路と選言標準形の間の比較

選言標準形が17を有している論理回路は、90の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は5.61%です = 6 / (90 + 17)。

参考文献

この記事では、論理回路と選言標準形との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »