ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

蛍光と蛍光色素

ショートカット: 違い類似点ジャカード類似性係数参考文献

蛍光と蛍光色素の違い

蛍光 vs. 蛍光色素

蛍光(けいこう、fluorescence)とは、発光現象の分類。. 蛍光色素とは蛍光を発光する色素。.

蛍光と蛍光色素間の類似点

蛍光と蛍光色素は(ユニオンペディアに)共通で10ものを持っています: 基底状態ストークスシフト色素蛍光蛍光ペン蛍光光度計蛍光顕微鏡蛍光染料電子電磁波

基底状態

基底状態(きていじょうたい、)とは、系の固有状態の内で最低のエネルギーの状態をいう。 古典力学では系の取りうるエネルギーは連続して存在するはずだが、ミクロの世界では量子力学によりエネルギーはとびとびの値を取る。その中で最低エネルギーの状態を基底状態とよび、それ以外の状態は励起状態とよぶ。 分子のような少数多体系であれば、基底状態は絶対零度の波動関数を意味する。しかし固体物理学では、有限温度での状態に対しても、素励起がなく、量子統計力学で記述される熱平衡状態をもって基底状態ということがある。これらは厳密には区別すべきものである。.

基底状態と蛍光 · 基底状態と蛍光色素 · 続きを見る »

ストークスシフト

nmのストークスシフトを持つローダミン6Gの吸光および発光スペクトル ストークスシフト(Stokes shift)は、同一の電子遷移の吸光および発光スペクトル(例えば蛍光やラマンなど)のバンド極大の位置の間の差(波長あるいは周波数単位)である。名称はアイルランドの物理学者ジョージ・G・ストークスに由来する。 系(分子あるいは原子)が光子を吸収する時、系はエネルギーを得て、励起状態に入る。系が緩和する1つの方法は光子を放出しエネルギーを失うことである(他には熱エネルギーを失う方法もある)。放出された光子が吸収された光子よりも小さいエネルギーを持つ時、このエネルギー差がストークシフトである。放出される光子のエネルギーが吸収された光子のエネルギーより大きい時は、このエネルギー差は反ストークスシフトと呼ばれる。この追加エネルギーは結晶格子中の熱フォノンの散逸から来ており、この過程で結晶は冷却される。酸硫化ガドリニウムをドープされた酸硫化イットリウムは一般的な工業的反ストークス色素であり、近赤外光を吸収し、可視光領域で発光する。フォトン・アップコンバージョンも反ストークス過程の一つである。ストークスシフトは、振動緩和(あるいは散逸)および溶媒の再組織化の2つの作用の結果である。フルオロフォア(蛍光体)は水分子で囲まれた双極子である。フルオロフォアが励起状態に入った時、その双極子モーメントは変化するが、水分子はこれに素早く適応することができない。振動緩和の後にのみ、それらの双極子モーメントの再編成が起こる。.

ストークスシフトと蛍光 · ストークスシフトと蛍光色素 · 続きを見る »

色素

色素(しきそ、coloring matter, pigment)は、可視光の吸収あるいは放出により物体に色を与える物質の総称。 色刺激が全て可視光の吸収あるいは放出によるものとは限らず、光の干渉による構造色や真珠状光沢など、可視光の吸収あるいは放出とは異なる発色原理に依存する染料や顔料も存在する。染料や顔料の多くは色素である。応用分野では色素は染料及び顔料と峻別されず相互に換言できる場合がある。色素となる物質は無機化合物と有機化合物の双方に存在する。.

色素と蛍光 · 色素と蛍光色素 · 続きを見る »

蛍光

蛍光(けいこう、fluorescence)とは、発光現象の分類。.

蛍光と蛍光 · 蛍光と蛍光色素 · 続きを見る »

蛍光ペン

250px 250px thumb 蛍光ペン(けいこうペン、)は、フェルトペンのうち、半透明の蛍光性インク(水性蛍光顔料インクなど)を用いたものである。.

蛍光と蛍光ペン · 蛍光ペンと蛍光色素 · 続きを見る »

蛍光光度計

蛍光光度計(けいこうこうどけい)は、分光光度計の一種で、光(励起光)を照射したときに試料から放出される蛍光を測定する装置である。.

蛍光と蛍光光度計 · 蛍光光度計と蛍光色素 · 続きを見る »

蛍光顕微鏡

リンパス製の落射型蛍光顕微鏡・鏡筒上にデジタルカメラが接続されている。この蛍光顕微鏡には微分干渉顕微鏡のユニットも組み込まれている。 蛍光染色を行って蛍光顕微鏡で観察したリンパ管内皮細胞 蛍光顕微鏡(けいこうけんびきょう、Fluorescence microscope, Epifluorescent microscope, MFM)は、生体または非生体試料からの蛍光・燐光現象を観察することによって、対象を観察する顕微鏡である。反射光や透過光画像と同時に観察することもある。生物学・医学における研究、臨床検査、浸透探傷検査などに用いられる。.

蛍光と蛍光顕微鏡 · 蛍光色素と蛍光顕微鏡 · 続きを見る »

蛍光染料

蛍光染料(けいこうせんりょう)とは蛍光性能(フォトルミネセンス)を持つ染料である。蛍光増白剤(けいこうぞうはくざい)もこの一種であり、白地のものをより白く見せるために洗剤に添加されたり、製紙工程で使用される。染着されることにより、蛍光増白能を有する染料を指す。.

蛍光と蛍光染料 · 蛍光染料と蛍光色素 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

蛍光と電子 · 蛍光色素と電子 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

蛍光と電磁波 · 蛍光色素と電磁波 · 続きを見る »

上記のリストは以下の質問に答えます

蛍光と蛍光色素の間の比較

蛍光色素が28を有している蛍光は、88の関係を有しています。 彼らは一般的な10で持っているように、ジャカード指数は8.62%です = 10 / (88 + 28)。

参考文献

この記事では、蛍光と蛍光色素との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »