ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

良い量子数と量子数

ショートカット: 違い類似点ジャカード類似性係数参考文献

良い量子数と量子数の違い

良い量子数 vs. 量子数

量子力学において、ある物理量の固有状態が同時に定常状態にもなっている時(つまりハミルトニアンと可換な時)、その物理量の固有値を良い量子数という。. 量子力学において量子数 (りょうしすう、quantum number) とは、量子状態を区別するための数のこと。 量子数はただ1組とは限らず、原理的には多数存在しうる。状態を区別できるのであれば量子数はどのように選んでも良い。しかし系の物理量がとる値自身、またはそれを区別する数を量子数として採用するしか方法は無い。例えばN粒子系では、各粒子の位置\bold_1, \cdots, \bold_Nを量子数に選んでも良いし、運動量\bold_1, \cdots, \bold_Nを選ぶこともできる。このときは量子数は全部で3N個となる。また一次元調和振動子では、位置や運動量を選ぶこともできるが、エネルギー固有値E_nの番号nを選ぶこともできる。位置や運動量を量子数として選んだ場合は量子数は連続変数となるが、エネルギー固有値の番号を選んだ場合は量子数は離散値になる。.

良い量子数と量子数間の類似点

良い量子数と量子数は(ユニオンペディアに)共通で6ものを持っています: ハミルトニアンスピン角運動量固有値固有状態軌道角運動量量子力学

ハミルトニアン

ハミルトニアン(Hamiltonian)あるいはハミルトン関数、特性関数(とくせいかんすう)は、物理学におけるエネルギーに対応する物理量である。各物理系の持つ多くの性質は、ハミルトニアンによって特徴づけられる。名称はイギリスの物理学者ウィリアム・ローワン・ハミルトンに因む。 ここでは、古典力学(解析力学)と量子力学の2つの体系に分けて説明するが、量子力学が古典力学から発展した経緯から、両者は密接に関連する。ハミルトニアンはそれぞれの体系に応じて関数または演算子もしくは行列の形式をとる。例えば、古典力学においてはハミルトニアンは正準変数の関数であり、量子力学では正準変数を量子化した演算子(もしくは行列)の形をとる。.

ハミルトニアンと良い量子数 · ハミルトニアンと量子数 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

スピン角運動量と良い量子数 · スピン角運動量と量子数 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

固有値と良い量子数 · 固有値と量子数 · 続きを見る »

固有状態

量子力学において、ある物理量 の固有状態 (eigenstate) とは、その物理量(オブザーバブル)を表すエルミート演算子 \hat の固有ベクトル \ \ のことである。 よって物理量 の固有状態 \ \ は以下の固有値方程式を満たす。 一般に、量子系について物理量の測定を行った時、どんなに同じように状態を用意して同じように測定をしても、測定値は測定によってバラバラである。しかし系が\hatの固有値 a_n \ に属する固有状態 |a_n\rangle \ であるときは、物理量 \hat を観測すれば必ず a_n \ という値を得る(オブザーバブルを参照)。よって「物理量 \hat の固有状態 |a_n\rangle \ は、物理量 \hat が確定した値 a_n を持っている状態である」と解釈できる。 また \hat はエルミート演算子なので、その固有値はすべて実数である。.

固有状態と良い量子数 · 固有状態と量子数 · 続きを見る »

軌道角運動量

軌道角運動量(きどうかくうんどうりょう、)とは、特に量子力学において、位置とそれに共役な運動量の積で表される角運動量のことである。 例えば原子の中で電子は、原子核が周囲に作る軌道を運動する。電子の全角運動量のうち、電子がその性質として持つスピン角運動量を除く部分が軌道角運動量である。.

良い量子数と軌道角運動量 · 軌道角運動量と量子数 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

良い量子数と量子力学 · 量子力学と量子数 · 続きを見る »

上記のリストは以下の質問に答えます

良い量子数と量子数の間の比較

量子数が44を有している良い量子数は、14の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は10.34%です = 6 / (14 + 44)。

参考文献

この記事では、良い量子数と量子数との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »