ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

粒子発見の年表と電子

ショートカット: 違い類似点ジャカード類似性係数参考文献

粒子発見の年表と電子の違い

粒子発見の年表 vs. 電子

粒子発見の年表(りゅうしはっけんのねんぴょう)は、1897年のジョセフ・ジョン・トムソンによる電子発見から、現代にいたる標準理論に含まれる素粒子を中心とした粒子の発見の歴史をまとめたものである。したがって、この表には陽電子などの反粒子、現在では複合粒子とされているバリオンや中間子なども含まれている。 すべての発端はトムソンの実験にあるが、トムソンの実験の背景には、電気量に最小単位があるらしいというファラデーの電気分解の実験結果があった。1881年にヘルムホルツが唱えた原子論では、電気の「原子」を扱っていた。トムソンが調べていた希薄気体中の放電現象においては、すでにデービーが磁石に影響されることを見出しており、1858年のプラッカーの論文では、さらに磁力の強さと放電の曲がり方の関係を調べている。ヒットルフは、放電が物質によってさえぎられることを示した。このような背景から、トムソンの発見が生まれた。いったん電子が発見されると、その後の進歩が速かったことは以下の年表からも読み取れる。. 電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

粒子発見の年表と電子間の類似点

粒子発見の年表と電子は(ユニオンペディアに)共通で23ものを持っています: 原子原子核原子模型反粒子中性子ポール・ディラックベータ崩壊アーネスト・ラザフォードカール・デイヴィッド・アンダーソンジャン・ペランジョゼフ・ジョン・トムソン粒子素粒子霧箱電荷電気素量陽子陽電子標準模型1897年1899年1911年1932年

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

原子と粒子発見の年表 · 原子と電子 · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

原子核と粒子発見の年表 · 原子核と電子 · 続きを見る »

原子模型

原子模型(げんしもけい、atomic theory, atomic model)とは、原子の内部の構造についてのモデルである。.

原子模型と粒子発見の年表 · 原子模型と電子 · 続きを見る »

反粒子

反粒子(はんりゅうし)とは、ある素粒子(または複合粒子)と比較して、質量とスピンが等しく、電荷など正負の属性が逆の粒子を言う。特に陽電子や反陽子などの反レプトンや反バリオンをさす場合もある。 反粒子が通常の粒子と衝突すると対消滅を起こし、すべての質量がエネルギーに変換される。逆に、粒子反粒子対の質量よりも大きなエネルギーを何らかの方法(粒子同士の衝突や光子などの相互作用)によって与えると、ある確率で粒子反粒子対を生成することができ、これを対生成と呼ぶ。.

反粒子と粒子発見の年表 · 反粒子と電子 · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

中性子と粒子発見の年表 · 中性子と電子 · 続きを見る »

ポール・ディラック

ポール・エイドリアン・モーリス・ディラック(Paul Adrien Maurice Dirac, 1902年8月8日 - 1984年10月20日)はイギリスのブリストル生まれの理論物理学者。量子力学及び量子電磁気学の基礎づけについて多くの貢献をした。1933年にエルヴィン・シュレーディンガーと共にノーベル物理学賞を受賞している。 彼はケンブリッジ大学のルーカス教授職を務め、最後の14年間をフロリダ州立大学の教授として過ごした。.

ポール・ディラックと粒子発見の年表 · ポール・ディラックと電子 · 続きを見る »

ベータ崩壊

ベータ崩壊(ベータほうかい、beta decay)とは、放射線としてベータ線(電子)を放出する放射性崩壊の一種である。 後にベータ線のみを放出するとするとベータ線のエネルギーレベルの連続性を説明できないことから、電子(ベータ線)と同時にニュートリノと呼ばれる粒子も放出する弱い相互作用の理論として整理された。.

ベータ崩壊と粒子発見の年表 · ベータ崩壊と電子 · 続きを見る »

アーネスト・ラザフォード

初代ネルソンのラザフォード男爵アーネスト・ラザフォード(Ernest Rutherford, 1st Baron Rutherford of Nelson, OM, FRS, 1871年8月30日 - 1937年10月19日)は、ニュージーランド出身、イギリスで活躍した物理学者、化学者。 マイケル・ファラデーと並び称される実験物理学の大家である。α線とβ線の発見、ラザフォード散乱による原子核の発見、原子核の人工変換などの業績により「原子物理学の父」と呼ばれる。 1908年にノーベル化学賞を受賞。ラザフォード指導の下、チャドウィックが中性子を発見、コッククロフトとウォルトンが加速器を使った元素変換の研究、エドワード・アップルトンが電離層の研究でノーベル賞を受賞している。後にラザホージウムと元素名にも彼は名を残している。.

アーネスト・ラザフォードと粒子発見の年表 · アーネスト・ラザフォードと電子 · 続きを見る »

カール・デイヴィッド・アンダーソン

ール・デイヴィッド・アンダーソン(Carl David Anderson、1905年9月3日-1991年1月11日)はアメリカの実験物理学者である。1936年に陽電子の発見でノーベル物理学賞を受賞した。 ニューヨークにスウェーデン移民の家の子供として生れる。カリフォルニア工科大学で物理と工学を学ぶ。1930年博士号取得。1939年から引退までカリフォルニア工科大学の教授の職にあった。.

カール・デイヴィッド・アンダーソンと粒子発見の年表 · カール・デイヴィッド・アンダーソンと電子 · 続きを見る »

ジャン・ペラン

ャン・バティスト・ペラン(Jean Baptiste Perrin, 1870年9月30日 - 1942年4月17日)はフランスの物理学者。息子のフランシス・ペランも物理学者。物質が分子からできていることを実験的に証明した。1926年、ノーベル物理学賞を受賞した。 ノール県リールに生まれて、パリの高等師範学校で学んだ。パリ大学で物理学の講師となり、1910年から1930年まで高等師範学校の教授を務めた。 1890年代は陰極線の研究を行った。1901年には原子核のまわりを電子が回っているという、現在に連なる原子模型を最初に発表しているが、この当時は注目されなかった。1908年から、ブラウン運動に関する精密な実験を行い、分子理論を実証した。1913年著書『原子』を出版した。 1936年にレオン・ブルム内閣の科学研究担当国務次官になった。ドイツのフランス占領中はアメリカ合衆国へ逃れ、ニューヨークで没した。遺体は第二次世界大戦後の1948年に軽巡洋艦ジャンヌ・ダルクによってフランスへ移送され、パンテオンに埋葬された。 小惑星(8116)ジャン・ペランは彼にちなみ命名された。.

ジャン・ペランと粒子発見の年表 · ジャン・ペランと電子 · 続きを見る »

ジョゼフ・ジョン・トムソン

ー・ジョゼフ・ジョン・トムソン(Sir Joseph John Thomson, 1856年12月18日-1940年8月30日)は、イギリスの物理学者。しばしばJ.

ジョゼフ・ジョン・トムソンと粒子発見の年表 · ジョゼフ・ジョン・トムソンと電子 · 続きを見る »

粒子

粒子(りゅうし、particle)は、比較的小さな物体の総称である。大きさの基準は対象によって異なり、また形状などの詳細はその対象によって様々である。特に細かいものを指す微粒子といった語もある。.

粒子と粒子発見の年表 · 粒子と電子 · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

粒子発見の年表と素粒子 · 素粒子と電子 · 続きを見る »

霧箱

霧箱(きりばこ、英語:cloud chamber)は、蒸気の凝結作用を用いて荷電粒子の飛跡を検出するための装置。1897年にチャールズ・ウィルソンが発明した。 過冷却などを用いて霧を発生させた気体の中に荷電粒子や放射線を入射させると気体分子のイオン化が起こり、そのイオンを凝結核として飛跡が観測される。霧箱はウィルソンによって実用化の研究が行われたことから、ウィルソン霧箱とも呼ばれる。霧箱の原理はこれまでに、ジョゼフ・ジョン・トムソンの電子や放射線の研究やカール・デイヴィッド・アンダーソンの陽電子の検出など様々な粒子や放射線の観測や、コンプトン散乱、原子核衝突、宇宙線の研究など多岐にわたる用途で用いられてきた。ニュートリノの観測は霧箱では検出できず、泡箱を用いることにより初めて検出された。.

粒子発見の年表と霧箱 · 電子と霧箱 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

粒子発見の年表と電荷 · 電子と電荷 · 続きを見る »

電気素量

電気素量 (でんきそりょう、elementary charge)は、電気量の単位となる物理定数である。陽子あるいは陽電子1個の電荷に等しく、電子の電荷の符号を変えた量に等しい。素電荷(そでんか)、電荷素量とも呼ばれる。一般に記号 で表される。 原子核物理学や化学では粒子の電荷を表すために用いられる。現在ではクォークの発見により、素電荷の1/3を単位とする粒子も存在するが、クォークの閉じ込めにより単独で取り出すことはできず、素電荷が電気量の最小単位である。 素粒子物理学では、電磁相互作用のゲージ結合定数であり、相互作用の大きさを表す指標である。 SIにおける電気素量の値は である2014年CODATA推奨値。SIとは異なる構成のガウス単位系(単位: esu)での値は であるParticle Data Group。.

粒子発見の年表と電気素量 · 電子と電気素量 · 続きを見る »

陽子

陽子(ようし、())とは、原子核を構成する粒子のうち、正の電荷をもつ粒子である。英語名のままプロトンと呼ばれることも多い。陽子は電荷+1、スピン1/2のフェルミ粒子である。記号 p で表される。 陽子とともに中性子によって原子核は構成され、これらは核子と総称される。水素(軽水素、H)の原子核は、1個の陽子のみから構成される。電子が離れてイオン化した水素イオン(H)は陽子そのものであるため、化学の領域では水素イオンをプロトンと呼ぶことが多い。 原子核物理学、素粒子物理学において、陽子はクォークが結びついた複合粒子であるハドロンに分類され、2個のアップクォークと1個のダウンクォークで構成されるバリオンである。ハドロンを分類するフレーバーは、バリオン数が1、ストレンジネスは0であり、アイソスピンは1/2、超電荷は1/2となる。バリオンの中では最も軽くて安定である。.

粒子発見の年表と陽子 · 陽子と電子 · 続きを見る »

陽電子

陽電子(ようでんし、ポジトロン、英語:positron)は、電子の反粒子。絶対量が電子と等しいプラスの電荷を持ち、その他の電子と等しいあらゆる特徴(質量やスピン角運動量 (1/2))を持つ。.

粒子発見の年表と陽電子 · 陽電子と電子 · 続きを見る »

標準模型

標準模型(ひょうじゅんもけい、、略称: SM)とは、素粒子物理学において、強い相互作用、弱い相互作用、電磁相互作用の3つの基本的な相互作用を記述するための理論のひとつである。標準理論(ひょうじゅんりろん)または標準モデル(ひょうじゅんモデル)とも言う。.

標準模型と粒子発見の年表 · 標準模型と電子 · 続きを見る »

1897年

記載なし。

1897年と粒子発見の年表 · 1897年と電子 · 続きを見る »

1899年

記載なし。

1899年と粒子発見の年表 · 1899年と電子 · 続きを見る »

1911年

記載なし。

1911年と粒子発見の年表 · 1911年と電子 · 続きを見る »

1932年

記載なし。

1932年と粒子発見の年表 · 1932年と電子 · 続きを見る »

上記のリストは以下の質問に答えます

粒子発見の年表と電子の間の比較

電子が118を有している粒子発見の年表は、141の関係を有しています。 彼らは一般的な23で持っているように、ジャカード指数は8.88%です = 23 / (141 + 118)。

参考文献

この記事では、粒子発見の年表と電子との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »