ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

粒子と波動の二重性と量子論

ショートカット: 違い類似点ジャカード類似性係数参考文献

粒子と波動の二重性と量子論の違い

粒子と波動の二重性 vs. 量子論

粒子と波動の二重性(りゅうしとはどうのにじゅうせい、Wave–particle duality)とは、量子論・量子力学における「量子」が、古典的な見方からすると、粒子的な性質と波動的な性質の両方を持つという性質のことである。 光のような物理現象が示す、このような性質への着目は、クリスティアーン・ホイヘンスとアイザック・ニュートンにより光の「本質」についての対立した理論(光の粒子説と光の波動説)が提出された1600年代に遡る。その後19世紀後半以降、アルベルト・アインシュタインやルイ・ド・ブロイらをはじめとする多くの研究によって、光や電子をはじめ、そういった現象を見せる全てのものは、古典的粒子のような性質も古典的波動のような性質も持つ、という「二重性」のある「量子」であると結論付けられた。この現象は、素粒子だけではなく、原子や分子といった複合粒子でも見られる。実際にはマクロサイズの粒子も波動性を持つが、干渉のような波動性に基づく現象を観測するのは、相当する波長の短さのために困難である。. 量子論(りょうしろん)とは、ある物理量が任意の値を取ることができず、特定の離散的な値しかとることができない、すなわち量子化を受けるような全ての現象と効果を扱う学問である。粒子と波動の二重性、物理的過程の不確定性、観測による不可避な擾乱も特徴である。量子論は、マックス・プランクのまで遡る全ての理論、、概念を包括する。量子仮説は1900年に、例えば光や物質構造に対する古典物理学的説明が限界に来ていたために産まれた。 量子論は、相対性理論と共に現代物理学の基礎的な二つの柱である。量子物理学と古典物理学との間の違いは、微視的な(例えば、原子や分子の構造)もしくは、特に「純粋な」系(例えば、超伝導やレーザー光)において特に顕著である。しかし、様々な物質の化学的および物理的性質(色、磁性、電気伝導性など)のように日常的な事も、量子論によってしか説明ができない。 量子論には、量子力学と量子場理論と呼ばれる二つの理論物理学上の領域が含まれる。量子力学はの場の影響下での振る舞いを記述する。量子場理論は場も量子的対象として扱う。これら二つの理論の予測は、実験結果と驚くべき精度で一致する。唯一の欠点は、現状の知識状態では一般相対性理論と整合させることができないという点にある。.

粒子と波動の二重性と量子論間の類似点

粒子と波動の二重性と量子論は(ユニオンペディアに)共通で28ものを持っています: 原子不確定性原理干渉 (物理学)マックス・プランクルイ・ド・ブロイヴェルナー・ハイゼンベルクプランク定数ド・ブロイ波ニールス・ボーアベル研究所分子周波数アルベルト・アインシュタインクリントン・デイヴィソンコペンハーゲン解釈コンプトン効果ジョージ・パジェット・トムソン光子光電効果回折粒子黒体放射量子力学量子化金属電子陰極線

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

原子と粒子と波動の二重性 · 原子と量子論 · 続きを見る »

不確定性原理

不確定性原理(ふかくていせいげんり、Unschärferelation Uncertainty principle)は、量子力学に従う系の物理量\hatを観測したときの不確定性と、同じ系で別の物理量\hatを観測したときの不確定性が適切な条件下では同時に0になる事はないとする一連の定理の総称である。特に重要なのは\hat、\hatがそれぞれ位置と運動量のときであり、狭義にはこの場合のものを不確定性原理という。 このような限界が存在するはずだという元々の発見的議論がハイゼンベルクによって与えられたため、これはハイゼンベルクの原理という名前が付けられることもある。しかし後述するようにハイゼンベルグ自身による不確定性原理の物理的説明は、今日の量子力学の知識からは正しいものではない。 今日の量子力学において、不確定性原理でいう観測は日常語のそれとは意味が異なるテクニカル・タームであり、観測機のようなマクロな古典的物体とミクロな量子物体との間の任意の相互作用を意味する。したがって例えば、実験者が観測機に表示された観測値を実際に見たかどうかといった事とは無関係に定義される。また不確定性とは、物理量を観測した時に得られる観測値の標準偏差を表す。 不確定性原理が顕在化する現象の例としては、原子(格子)の零点振動(このためヘリウムは、常圧下では絶対零度まで冷却しても固化しない)、その他量子的なゆらぎ(例:遍歴電子系におけるスピン揺らぎ)などが挙げられる。.

不確定性原理と粒子と波動の二重性 · 不確定性原理と量子論 · 続きを見る »

干渉 (物理学)

2波干渉 物理学における波の干渉(かんしょう、interference)とは、複数の波の重ね合わせによって新しい波形ができることである。互いにコヒーレントな(相関性が高い)波のとき干渉が顕著に現れる。このような波は、同じ波源から出た波や、同じもしくは近い周波数を持つ波である。.

干渉 (物理学)と粒子と波動の二重性 · 干渉 (物理学)と量子論 · 続きを見る »

マックス・プランク

マックス・カール・エルンスト・ルートヴィヒ・プランク(Max Karl Ernst Ludwig Planck, 1858年4月23日 - 1947年10月4日)は、ドイツの物理学者で、量子論の創始者の一人である。「量子論の父」とも呼ばれている。科学の方法論に関して、エルンスト・マッハらの実証主義に対し、実在論的立場から激しい論争を繰り広げた。1918年にノーベル物理学賞を受賞。.

マックス・プランクと粒子と波動の二重性 · マックス・プランクと量子論 · 続きを見る »

ルイ・ド・ブロイ

ルイ・ド・ブロイこと、第7代ブロイ公爵ルイ=ヴィクトル・ピエール・レーモン(Louis-Victor Pierre Raymond, 7e duc de Broglie 、1892年8月15日 - 1987年3月19日)は、フランスの理論物理学者。 彼が博士論文で仮説として提唱したド・ブロイ波(物質波)は、当時こそ孤立していたが、後にシュレディンガーによる波動方程式として結実し、量子力学の礎となった。.

ルイ・ド・ブロイと粒子と波動の二重性 · ルイ・ド・ブロイと量子論 · 続きを見る »

ヴェルナー・ハイゼンベルク

ヴェルナー・カール・ハイゼンベルク(Werner Karl Heisenberg, 1901年12月5日 - 1976年2月1日)は、ドイツの理論物理学者。行列力学と不確定性原理によって量子力学に絶大な貢献をした。.

ヴェルナー・ハイゼンベルクと粒子と波動の二重性 · ヴェルナー・ハイゼンベルクと量子論 · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

プランク定数と粒子と波動の二重性 · プランク定数と量子論 · 続きを見る »

ド・ブロイ波

ド・ブロイ波(ド・ブロイは、de Broglie wave)は、1924年にルイ・ド・ブロイが提唱した粒子性と波動性を結びつける考え方である。ド・ブローイ波、物質波ともいう。 質量mの粒子が速さv(運動量 mv.

ド・ブロイ波と粒子と波動の二重性 · ド・ブロイ波と量子論 · 続きを見る »

ニールス・ボーア

ニールス・ヘンリク・ダヴィド・ボーア(Niels Henrik David Bohr、1885年10月7日 - 1962年11月18日)は、デンマークの理論物理学者。量子論の育ての親として、前期量子論の展開を指導、量子力学の確立に大いに貢献した。王立協会外国人会員。.

ニールス・ボーアと粒子と波動の二重性 · ニールス・ボーアと量子論 · 続きを見る »

ベル研究所

ベル研究所(ベルけんきゅうじょ、Bell Laboratories)はもともとBell System社の研究開発部門として設立された研究所であり、現在はノキアの子会社である。「ベル電話研究所」、略して「ベル研」とも。.

ベル研究所と粒子と波動の二重性 · ベル研究所と量子論 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

分子と粒子と波動の二重性 · 分子と量子論 · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

周波数と粒子と波動の二重性 · 周波数と量子論 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

アルベルト・アインシュタインと粒子と波動の二重性 · アルベルト・アインシュタインと量子論 · 続きを見る »

クリントン・デイヴィソン

リントン・デイヴィソン(Clinton Joseph Davisson, 1881年10月22日 - 1958年2月1日)はアメリカ合衆国の物理学者である。1927年、レスター・ジャマー(Lester Halbert Germer, 1896年 - 1971年)と共に、ニッケル単結晶による電子線の回折を確認した。これはルイ・ド・ブロイの物質波の予測を確認したものである。1937年、別に電子線の回折実験に成功したジョージ・パジェット・トムソンとともにノーベル物理学賞を受賞した。.

クリントン・デイヴィソンと粒子と波動の二重性 · クリントン・デイヴィソンと量子論 · 続きを見る »

コペンハーゲン解釈

ペンハーゲン解釈(コペンハーゲンかいしゃく)は、量子力学の解釈の一つである。 量子力学の状態は、いくつかの異なる状態の重ね合わせで表現される。このことを、どちらの状態であるとも言及できないと解釈し、観測すると観測値に対応する状態に変化する(波束の収縮が起こる)と解釈する。 「コペンハーゲン解釈」という名称は、デンマークの首都コペンハーゲンにあるボーア研究所から発信されたことに由来する。.

コペンハーゲン解釈と粒子と波動の二重性 · コペンハーゲン解釈と量子論 · 続きを見る »

コンプトン効果

ンプトン効果(コンプトンこうか、Compton effect)とは、X線を物体に照射したとき、散乱X線の波長が入射X線の波長より長くなる現象である。これは電子によるX線の非弾性散乱によって起こる現象であり、X線(電磁波)が粒子性をもつこと、つまり光子として振る舞うことを示す。また、コンプトン効果の生じる散乱をコンプトン散乱(コンプトンさんらん、Compton scattering)と呼ぶ。 .

コンプトン効果と粒子と波動の二重性 · コンプトン効果と量子論 · 続きを見る »

ジョージ・パジェット・トムソン

ョージ・パジェット・トムソン(George Paget Thomson、1892年5月3日 – 1975年9月10日)は、イギリスのケンブリッジ生まれの物理学者である。1937年電子の波動性の証明によってノーベル物理学賞を受賞した。父親もノーベル賞受賞者のジョゼフ・ジョン・トムソンである。.

ジョージ・パジェット・トムソンと粒子と波動の二重性 · ジョージ・パジェット・トムソンと量子論 · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

光と粒子と波動の二重性 · 光と量子論 · 続きを見る »

光子

|mean_lifetime.

光子と粒子と波動の二重性 · 光子と量子論 · 続きを見る »

光電効果

光電効果(こうでんこうか、photoelectric effect)とは、外部光電効果と内部光電効果の総称である。単に光電効果という場合は外部光電効果を指す場合が多い。内部光電効果は光センサなどで広く利用される。光電効果そのものは特異な現象ではなく酸化物、硫化物その他無機化合物、有機化合物等に普遍的に起こる。.

光電効果と粒子と波動の二重性 · 光電効果と量子論 · 続きを見る »

回折

平面波がスリットから回折する様子を波面で表わした模式図 回折(かいせつ、英語:diffraction)とは媒質中を伝わる波(または波動)に対し障害物が存在する時、波がその障害物の背後など、つまり一見すると幾何学的には到達できない領域に回り込んで伝わっていく現象のことを言う。1665年にイタリアの数学者・物理学者であったフランチェスコ・マリア・グリマルディにより初めて報告された。障害物に対して波長が大きいほど回折角(障害物の背後に回り込む角度)は大きい。 回折は音波、水の波、電磁波(可視光やX線など)を含むあらゆる波について起こる。単色光を十分に狭いスリットに通しスクリーンに当てると回折によって光のあたる範囲が広がる。また、スリットが複数の場合や単一でも波長より広い場合、干渉によって縞模様ができる。この現象は、量子性が顕著となる粒子のビーム(例:電子線、中性子線など)でも起こる(参照:物質波)。.

回折と粒子と波動の二重性 · 回折と量子論 · 続きを見る »

粒子

粒子(りゅうし、particle)は、比較的小さな物体の総称である。大きさの基準は対象によって異なり、また形状などの詳細はその対象によって様々である。特に細かいものを指す微粒子といった語もある。.

粒子と粒子と波動の二重性 · 粒子と量子論 · 続きを見る »

黒体放射

黒体放射()とは黒体が放出する熱放射で黒体の温度のみで定まり、実在する物体の放射度は、概して黒体の放射度よりも小さく、黒体放射の波長はプランクの放射式によって理論的に定まる。 温度が低いときは赤っぽく、温度が高いほど青白くなる。夜空に輝く星々も青白い星ほど温度が高い。温度はK(ケルビン)で表示される。 理想的な黒体放射をもっとも再現するとされる空洞放射が温度のみに依存するという法則は、1859年にグスタフ・キルヒホフにより発見された。以来、空洞放射のスペクトルを説明する理論が研究され、最終的に1900年にマックス・プランクによりプランク分布が発見されたことで、その理論が完成された。 物理的に黒体放射をプランク分布で説明するためには、黒体が電磁波を放出する(電気双極子が振動する)ときの振動子の量子化を仮定する必要がある(プランクの法則)。つまり、振動子が持ちうるエネルギー は振動数 の整数倍に比例しなければならない。 この比例定数 は、後にプランク定数とよばれ、物理学の基本定数となった。これは、物理量は連続な値をとり量子化されない、とする古典力学と反する仮定であったが、1905年にアルベルト・アインシュタインがこのプランクの量子化の仮定と光子の概念とを用いて光電効果を説明したことにより、この量子化の仮定に基づいた量子力学が築かれることとなった。.

粒子と波動の二重性と黒体放射 · 量子論と黒体放射 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

粒子と波動の二重性と量子力学 · 量子力学と量子論 · 続きを見る »

量子化

量子化(りょうしか、quantization)とは、ある物理量が量子の整数倍になること、あるいは整数倍にする処理のこと。.

粒子と波動の二重性と量子化 · 量子化と量子論 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

粒子と波動の二重性と金属 · 量子論と金属 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

粒子と波動の二重性と電子 · 量子論と電子 · 続きを見る »

陰極線

極線(いんきょくせん、Cathode ray)とは真空管の中で観察される電子の流れである。真空に排気されたガラス容器に一対の電極を封入して電圧をかけると、陰極(電源のマイナス端子に接続された電極)の逆側にある容器内壁が発光する。その原因は陰極表面から電子が垂直に撃ち出されることによる。この現象は1869年にドイツの物理学者ヴィルヘルム・ヒットルフによって初めて観察され、1876年にによってKathodenstrahlen(陰極線)と名付けられた。近年では電子線や電子ビームと呼ばれることが多い。 電子が初めて発見されたのは、陰極線を構成する粒子としてであった。1897年、英国の物理学者J・J・トムソンは、陰極線の正体が負電荷を持つ未知の粒子であることを示し、この粒子が後に「電子」と呼ばれるようになった。初期のテレビに用いられていたブラウン管(CRT、cathode ray tubeすなわち「陰極線管」)は、収束させた陰極線を電場や磁場で偏向させることによって像を作っている。.

粒子と波動の二重性と陰極線 · 量子論と陰極線 · 続きを見る »

上記のリストは以下の質問に答えます

粒子と波動の二重性と量子論の間の比較

量子論が194を有している粒子と波動の二重性は、68の関係を有しています。 彼らは一般的な28で持っているように、ジャカード指数は10.69%です = 28 / (68 + 194)。

参考文献

この記事では、粒子と波動の二重性と量子論との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »