ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

積分法と超球面

ショートカット: 違い類似点ジャカード類似性係数参考文献

積分法と超球面の違い

積分法 vs. 超球面

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x. 数学において、 次元球面(-じげんきゅうめん、n-sphere, n 球面)は普通の球面の ''n'' 次元空間への一般化である。任意の自然数 n に対して、半径 r の n 次元球面は中心点から距離 r にある (n + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 r は任意の正の実数でよい。したがって、原点を中心とする n 次元球面は によって定義される。これは (n + 1) 次元ユークリッド空間内に存在する n 次元多様体である。 特に:.

積分法と超球面間の類似点

積分法と超球面は(ユニオンペディアに)共通で6ものを持っています: 多様体実数実数直線ドーヴァー出版ホッジ双対開集合

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

多様体と積分法 · 多様体と超球面 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

実数と積分法 · 実数と超球面 · 続きを見る »

実数直線

数学における実数直線(じっすうちょくせん、real line, real number line)は、その上の各点が実数であるような直線である。つまり、実数直線とは、すべての実数からなる集合 を、幾何学的な空間(具体的には一次元のユークリッド空間)とみなしたものということである。この空間はベクトル空間(またはアフィン空間)や距離空間、位相空間、測度空間あるいは線型連続体としてみることもできる。 単に実数全体の成す集合としての実数直線は記号 (あるいは黒板太字の &#x211d) で表されるのがふつうだが、それが一次元のユークリッド空間であることを強調する意味で と書かれることもある。 本項では の位相幾何学的、幾何学的あるいは実解析的な側面に焦点を当てる。もちろん実数の全体は一つの体として代数学でも重要な意味を持つが、その文脈での が直線として言及されるのは稀である。そういった観点を含めた の詳細は実数の項を参照のこと。.

実数直線と積分法 · 実数直線と超球面 · 続きを見る »

ドーヴァー出版

ドーヴァー出版(英:Dover Publications)は、アメリカの出版社。本社はニューヨーク市にある。1941年設立。 元の出版元で絶版になった本の再出版で有名である。再出版する書籍にはパブリックドメインのものも多い。歴史的に意義深く質の高い本を丈夫な製本と安い値段で提供する方針のもとに、現在までに9,000タイトル以上の書籍を出版している。 古典文学、クラシック音楽の楽譜、18-19世紀の図版の再出版が特に有名である。また、学生から一般読者向けの数学・科学関連書籍や、軍事史、アメリカ史、奇術、チェスなど特定の分野の本の出版もしている。 著作権使用料無料(royalty-free)のデザイン・イラスト集を多く出版しており、画集的なものから、そのままコピーして使う素材集まで存在する。題材は19世紀以前のイラスト、アールヌーボーの意匠、伝統的な民族文様など多様である。CD-ROM付きのシリーズもある。コンピューター関連メディア企業オライリー社の初期の書籍表紙の動物の絵は、ドーヴァー出版の19世紀の版画図版から採用されたものである。.

ドーヴァー出版と積分法 · ドーヴァー出版と超球面 · 続きを見る »

ホッジ双対

数学において、ホッジスター作用素(ホッジスターさようそ、Hodge star operator)、もしくは、ホッジ双対(ホッジそうつい、Hodge dual)は、(Hodge)により導入された線型写像である。ホッジ双対は、有限次元の向き付けられた内積空間の外積代数の上で定義される -ベクトルのなす空間から-ベクトルのなす空間への線形同型である。 他のベクトル空間に対する多くの構成と同様に、ホッジスター作用素は多様体の上のベクトルバンドルへの作用に拡張することができる。 たとえば余接束の外積代数(すなわち、多様体上の微分形式の空間)に対して、ホッジスター作用素を用いてラプラス=ド・ラーム作用素を定義し、コンパクトなリーマン多様体上の微分形式のホッジ分解を導くことができる。.

ホッジ双対と積分法 · ホッジ双対と超球面 · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

積分法と開集合 · 超球面と開集合 · 続きを見る »

上記のリストは以下の質問に答えます

積分法と超球面の間の比較

超球面が58を有している積分法は、125の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は3.28%です = 6 / (125 + 58)。

参考文献

この記事では、積分法と超球面との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »