ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

移流拡散方程式

索引 移流拡散方程式

移流拡散方程式とは、移流方程式と拡散方程式が組み合わされた、それらよりも一般的な流れを表す2階線型偏微分方程式である。物理量φ(t, x)が、速度c で流れ、かつ拡散係数D で拡散する場合の移流拡散方程式は次の式で表される:.

19 関係: 偏微分方程式境界条件定常状態微分方程式ナビエ–ストークス方程式バーガース方程式ラプラス変換ヘヴィサイドの階段関数フィックの法則初期値問題移流無次元量物理量誤差関数速度流れ数値流体力学拡散拡散方程式

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

新しい!!: 移流拡散方程式と偏微分方程式 · 続きを見る »

境界条件

境界条件(きょうかいじょうけん、boundary condition)とは、境界値問題に課される拘束条件のこと。特に数学・物理学の用語としてよく用いられる。 境界条件は、境界値問題において興味のある解の探索領域とそれ以外の領域とを分けるために設定される。境界上では、境界内部で成り立つ方程式だけでは解の形を決定することができないので、補助的な条件を設定することで解を定める必要がある。この境界条件は多くの場合、対象とする境界値問題より一般的に成り立つであろう解の性質によって決定される。それは例えば境界上での解の値であったり、解の連続性や滑らかさであったりする。 時間的な境界条件の一つとして初期条件がある。時間発展を記述する方程式について、初期条件は応用上特別な意味を持つため、一般の境界条件とは分けて言及されることが多い。.

新しい!!: 移流拡散方程式と境界条件 · 続きを見る »

定常状態

定常状態(ていじょうじょうたい、steady state)とは、時間的に一定して変わらない状態を意味し、自然科学の各分野で用いられる概念である。 自然界において、たとえば小川は、上流などで雨が降らない限り、時間とともに川の流れの速度や流量が変わることはなく一定であり、この意味で定常状態にあると言える。.

新しい!!: 移流拡散方程式と定常状態 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 移流拡散方程式と微分方程式 · 続きを見る »

ナビエ–ストークス方程式

ナビエ–ストークス方程式(ナビエ–ストークスほうていしき、Navier–Stokes equations)は、流体の運動を記述する2階非線型偏微分方程式であり、流体力学で用いられる。アンリ・ナビエとジョージ・ガブリエル・ストークスによって導かれた。NS方程式とも略される。ニュートン力学における運動の第2法則に相当し、運動量の流れの保存則を表す。.

新しい!!: 移流拡散方程式とナビエ–ストークス方程式 · 続きを見る »

バーガース方程式

物理学、特に流体力学においてバーガース方程式(-ほうていしき、Burgers equation)とは、一次元の非線形波動を記述する二階偏微分方程式。方程式の名は、オランダの物理学者に因む。一次元のナビエ-ストークス方程式において、圧力を無視できる場合に相当する。非線形な偏微分方程式であるが、コール・ホップ変換と呼ばれる変換にて、線形な拡散方程式に帰着させることができる。.

新しい!!: 移流拡散方程式とバーガース方程式 · 続きを見る »

ラプラス変換

関数解析学において、ラプラス変換(ラプラスへんかん、Laplace transform)とは、積分で定義される関数空間の間の写像(線型作用素)の一種。関数変換。 ラプラス変換の名はピエール=シモン・ラプラスにちなむ。 ラプラス変換によりある種の微分・積分は積などの代数的な演算に置き換わるため、制御工学などにおいて時間領域の(とくに超越的な)関数を別の領域の(おもに代数的な)関数に変換することにより、計算方法の見通しを良くするための数学的な道具として用いられる。 フーリエ変換を発展させて、より実用本位で作られた計算手法である。1899年に電気技師であったオリヴァー・ヘヴィサイドが回路方程式を解くための実用的な演算子を経験則として考案して発表し、後に数学者がその演算子に対し厳密に理論的な裏付けを行った経緯がある。理論的な根拠が曖昧なままで発表されたため、この計算手法に対する懐疑的な声も多かった。この「ヘヴィサイドの演算子」の発表の後に、多くの数学者達により数学的な基盤は1780年の数学者ピエール=シモン・ラプラスの著作にある事が指摘された(この著作においてラプラス変換の公式が頻繁に現れていた)。 従って、数学の中ではかなり応用寄りの分野である。ラプラス変換の理論は微分積分、線形代数、ベクトル解析、フーリエ解析、複素解析を基盤としているため、理解するためにはそれらの分野を習得するべきである。 これと類似の解法として、より数学的な側面から作られた演算子法がある。こちらは演算子の記号を多項式に見立て、代数的に変形し、公式に基づいて特解を求める方法である。.

新しい!!: 移流拡散方程式とラプラス変換 · 続きを見る »

ヘヴィサイドの階段関数

ヘヴィサイドの階段関数(ヘヴィサイドのかいだんかんすう、Heaviside step function)は、正負の引数に対しそれぞれ 1, 0 を返す階段関数 である。名称はオリヴァー・ヘヴィサイドにちなむ。ヘヴィサイド関数と呼ばれることもある。通常、H(x) や Y(x) などで表されることが多い。 単位ステップ関数と似ているが、こちらは と x.

新しい!!: 移流拡散方程式とヘヴィサイドの階段関数 · 続きを見る »

フィックの法則

フィックの法則(フィックのほうそく、)とは、物質の拡散に関する基本法則である。気体、液体、固体(金属)どの拡散にも適用できる。フィックの法則には、第1法則と第2法則がある。 この法則は、1855年にアドルフ・オイゲン・フィックによって発表された。フィックは拡散現象を、熱伝導に関するフーリエ (1822) の理論と同じように考えることができるとしてこの法則を与えた。.

新しい!!: 移流拡散方程式とフィックの法則 · 続きを見る »

初期値問題

数学の微分方程式の分野における初期値問題(しょきちもんだい、Initial value problem)とは、未知関数のある点における値を初期条件として備えた常微分方程式のことを言う(コーシー問題とも呼ばれる)。物理学あるいは他の自然科学の分野において、あるシステムをモデル化することはある初期値問題を解くことと同義である場合が多い。そのような場合、微分方程式は与えられた初期条件に対してシステムがどのように時間発展するかを特徴付ける発展方程式と見なされる。.

新しい!!: 移流拡散方程式と初期値問題 · 続きを見る »

移流

移流(いりゅう、advection)とは、温度や物質濃度などにばらつきがある空間のある地点において、空間内の物質の移動によって温度や物質濃度の変化が起こる(物理量が空間内で運ばれる)こと。物理学のうち特に流体力学に関係が深い。上記の空間を基点とした考え方はオイラー的な考え方とされ、逆に物質を基点としたラグランジュ的な考え方が以下のように述べられる(連続体力学#物質表示と空間表示を参照)。 例として、ある地点の上空に冷たい空気があって、その西に暖かい空気があるとする。ここで、西風によって暖かい空気が運ばれることを移流といい、その地点では気温の上昇が観測される(オイラー記述)。暖かい空気が西側、冷たい空気が東側に存在し、西風によって冷たい空気はある地点から東側へ、暖かい空気は東側のある地点へ移動する(ラグランジュ記述)。.

新しい!!: 移流拡散方程式と移流 · 続きを見る »

無次元量

無次元量(むじげんりょう、dimensionless quantity)とは、全ての次元指数がゼロの量である。慣習により無次元量と呼ばれるが無次元量は次元を有しており、指数法則により無次元量の次元は1である。 無次元数(むじげんすう、)、無名数(むめいすう、)とも呼ばれる。 無次元量の数値は単位の選択に依らないので、一般的な現象を特徴付けるパラメータとして数学、物理学、工学、経済など多くの分野で広く用いられる。このようなパラメータは現実には物質ごとに決まるなど必ずしも操作可能な量ではないが、理論や数値実験においては操作的な変数として取り扱うこともある。.

新しい!!: 移流拡散方程式と無次元量 · 続きを見る »

物理量

物理量(ぶつりりょう、physical quantity)とは、.

新しい!!: 移流拡散方程式と物理量 · 続きを見る »

誤差関数

誤差関数(ごさかんすう、error function)は、数学におけるシグモイド形状の特殊関数(非初等関数)の一種で、確率論、統計学、物質科学、偏微分方程式などで使われる。ガウスの誤差関数とも。定義は以下の通り。 相補誤差関数 (complementary error function) は erfc と表記され、誤差関数を使って以下のように定義される。 スケーリング相補誤差関数(scaled complementary error function)W.

新しい!!: 移流拡散方程式と誤差関数 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: 移流拡散方程式と速度 · 続きを見る »

流れ

流れ(ながれ)は.

新しい!!: 移流拡散方程式と流れ · 続きを見る »

数値流体力学

数値流体力学(すうちりゅうたいりきがく、computational fluid dynamics、略称:)とは、流体の運動に関する方程式(オイラー方程式、ナビエ-ストークス方程式、またはその派生式)をコンピュータで解くことによって流れを観察する数値解析・シミュレーション手法。計算流体力学とも。コンピュータの性能向上とともに飛躍的に発展し、航空機・自動車・鉄道車両・船舶等の流体中を移動する機械および建築物の設計をするにあたって風洞実験に並ぶ重要な存在となっている。.

新しい!!: 移流拡散方程式と数値流体力学 · 続きを見る »

拡散

拡散(かくさん、独、英、仏: Diffusion) とは、粒子、熱、運動量などが自発的に散らばり広がる物理現象である。この現象は着色した水を無色の水に滴下したとき、煙が空気中に広がるときなど、日常よく見られる。これらは、化学反応や外力ではなく、流体の乱雑な運動の結果として起こるものである。.

新しい!!: 移流拡散方程式と拡散 · 続きを見る »

拡散方程式

拡散方程式(かくさんほうていしき、diffusion equation)は拡散が生じている物質あるいは物理量(本稿では拡散物質と記述)の密度のゆらぎを記述する偏微分方程式である。集団遺伝学における対立遺伝子の拡散のように、拡散と同様の振る舞いをする現象を記述するのにも用いられる。伝熱の分野で熱伝導を記述する方程式は熱伝導方程式(Heat equation)と呼ばれる。 方程式は一般に以下のように書かれる。 ただし、\vecは位置、tは時刻、\, \phi(\vec,t) は拡散物質の 密度、 D(\phi,\vec,t) は拡散係数(2階のテンソル量)、ナブラ \, \nabla は空間微分作用素である。拡散係数D が定数ならば、方程式は以下の線形方程式に帰着される。 D が他の変数に依存する場合方程式は非線形となる。さらに、D が正定値対称行列であれば方程式は異方的拡散となる。.

新しい!!: 移流拡散方程式と拡散方程式 · 続きを見る »

ここにリダイレクトされます:

ペクレ数ドリフト-拡散方程式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »