ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

温度と絶対零度

ショートカット: 違い類似点ジャカード類似性係数参考文献

温度と絶対零度の違い

温度 vs. 絶対零度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。. 絶対零度(ぜったいれいど、Absolute zero)とは、絶対温度の下限で、理想気体のエントロピーとエンタルピーが最低値になった状態、つまり 0 度を表す。理想気体の状態方程式から導き出された値によるとケルビンやランキン度の0 度は、セルシウス度で −273.15 ℃、ファーレンハイト度で −459.67 である。 絶対零度は最低温度とされるが、エンタルピーは0にはならない。統計力学では0 K未満の負温度が存在する。.

温度と絶対零度間の類似点

温度と絶対零度は(ユニオンペディアに)共通で11ものを持っています: 不確定性原理ランキン度エントロピーケルビンシャルルの法則セルシウス度統計力学熱力学温度物質華氏量子力学

不確定性原理

不確定性原理(ふかくていせいげんり、Unschärferelation Uncertainty principle)は、量子力学に従う系の物理量\hatを観測したときの不確定性と、同じ系で別の物理量\hatを観測したときの不確定性が適切な条件下では同時に0になる事はないとする一連の定理の総称である。特に重要なのは\hat、\hatがそれぞれ位置と運動量のときであり、狭義にはこの場合のものを不確定性原理という。 このような限界が存在するはずだという元々の発見的議論がハイゼンベルクによって与えられたため、これはハイゼンベルクの原理という名前が付けられることもある。しかし後述するようにハイゼンベルグ自身による不確定性原理の物理的説明は、今日の量子力学の知識からは正しいものではない。 今日の量子力学において、不確定性原理でいう観測は日常語のそれとは意味が異なるテクニカル・タームであり、観測機のようなマクロな古典的物体とミクロな量子物体との間の任意の相互作用を意味する。したがって例えば、実験者が観測機に表示された観測値を実際に見たかどうかといった事とは無関係に定義される。また不確定性とは、物理量を観測した時に得られる観測値の標準偏差を表す。 不確定性原理が顕在化する現象の例としては、原子(格子)の零点振動(このためヘリウムは、常圧下では絶対零度まで冷却しても固化しない)、その他量子的なゆらぎ(例:遍歴電子系におけるスピン揺らぎ)などが挙げられる。.

不確定性原理と温度 · 不確定性原理と絶対零度 · 続きを見る »

ランキン度

ランキン度(ランキンど、、記号: °R)は、温度の単位である。蘭氏温度(らんしおんど)ともいう。絶対零度を 0 としている点では、ケルビンと同じであるが、ケルビンが 1 度の間隔をセルシウス度(摂氏温度)と同じにしているのに対して、ランキン度は 1 度の間隔をファーレンハイト度(華氏温度)と同じにしている。そのため、華氏を温度の単位として日常で使っているアメリカ圏の人々には非常に使いやすい単位であるが、既に熱力学温度の単位としてケルビンを使うことが決まっており、特に他に用途がないので、実際はあまり普及しなかった。ウィリアム・ランキンにちなむ。 Category:温度の単位 Category:エポニム.

ランキン度と温度 · ランキン度と絶対零度 · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

エントロピーと温度 · エントロピーと絶対零度 · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

ケルビンと温度 · ケルビンと絶対零度 · 続きを見る »

シャルルの法則

ャルルの法則(Charles's lawアトキンス『物理化学 上』 p.19)とは、一定の圧力の下で、気体の体積の温度変化に対する依存性を示した法則である。シャールの法則ともいう。1787年にジャック・シャルルが発見し、1802年にジョセフ・ルイ・ゲイ=リュサックによって初めて発表された。この法則は理想気体に対して成り立つ近似法則であり、実在気体ではずれが生じる。この法則から絶対零度の存在と、普遍的な理想気体温度の存在が見いだされる。 実在気体は厳密にはシャルルの法則を満たさないが、気体が比較的低圧・高温の範囲にある場合にはこの法則の式は非常によい近似式となっている。逆に高圧・低温である場合には気体分子同士に働く分子間力や分子自体の大きさの影響が無視できなくなり、計算される気体体積と若干の誤差を生じる場合が多いので注意すべきである。.

シャルルの法則と温度 · シャルルの法則と絶対零度 · 続きを見る »

セルシウス度

ルシウス度(セルシウスど、、記号: )は、温度の単位である。その単位の大きさはケルビンと同一である。国際単位系 (SI) では、次のように定義されている『国際単位系(SI)』2.1.1.5 熱力学温度の単位(ケルビン)、pp.24-25。 すなわち、「セルシウス度」()は単位の名称であり、ケルビンの大きさに等しい温度間隔を表す。一方、「セルシウス温度」()は量の名称であり、(ケルビンで計った値と273.15だけ異なる)温度の高さを表す。しかし、一般にはこの違いが意識されず、混同されることが多い。.

セルシウス度と温度 · セルシウス度と絶対零度 · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

温度と統計力学 · 統計力学と絶対零度 · 続きを見る »

熱力学温度

熱力学温度(ねつりきがくおんど、)熱力学的温度(ねつりきがくてきおんど)とも呼ばれる。は、熱力学に基づいて定義される温度である。 国際量体系 (ISQ) における基本量の一つとして位置付けられ、次元の記号としてサンセリフローマン体の が用いられる。また、国際単位系 (SI) における単位はケルビン(記号: K)が用いられる。熱力学や統計力学に関する文献やそれらの応用に関する文献では、熱力学温度の意味で温度 という言葉を使うことが多い。 熱力学温度は平衡熱力学における基本的要請を満たすように定義される示強変数であり、そのような温度は一つに限らない。 熱力学温度が持つ基本的な性質の一つとして普遍性がある。具体的な物質の熱膨張などを基準として定められる温度は、選んだ物質に固有の性質をその定義に含んでしまい、特殊な状況を除いて温度の取り扱いが煩雑になる。熱力学温度はシャルルの法則や熱力学第二法則のような物質固有の性質に依存しない法則に基づいて定められるため、物質の選択にまつわる困難を避けることができる。 熱力学温度が持つもう一つの基本的な性質として、下限の存在が挙げられる。熱力学温度の下限は実現可能な熱力学的平衡状態熱力学や統計力学に関する文献では単に平衡状態と呼ばれることが多い。を決定する。この熱力学温度の下限は絶対零度と呼ばれる。 統計力学の分野においては逆温度が定義されしばしば熱力学温度に代わって用いられる。逆温度 は(理想気体温度の意味での)熱力学温度 に反比例する ことが知られ( はボルツマン定数)、このことが の名前の由来となっている。 また統計力学では「絶対零度を下回る」温度として負温度が導入されるが、負温度は熱力学や平衡統計力学の意味での温度とは異なる概念である。熱力学で用いられる通常の温度は平衡状態の系を特徴づける物理量だが、負温度は反転分布の実現するような非平衡系や系のエネルギーに上限が存在するような特殊な系を特徴づける量である。負温度はある種の非平衡系に対してカノニカル分布を拡張した際に、この分布に対する逆温度の逆数(をボルツマン定数で割ったもの)として定義され、負の値をとる。すなわち、負の逆温度 に対し負温度 は という関係が成り立つように定められる。この関係は通常の(正の)温度と逆温度の関係をそのまま非平衡系に対して適用したものとなっている。しかしながらその元となる逆温度と温度の対応関係は、統計力学で定義される諸々の熱力学ポテンシャルが熱力学で定義されたものと(漸近的に)一致するという要請から導かれるものであり、負温度が実現する系において同様の関係が成り立つと考える必然性はない。 熱力学温度はしばしば絶対温度(ぜったいおんど、absolute temperature)とも呼ばれる。多くの場合、熱力学温度と絶対温度は同義であるが、「絶対温度」という言葉の用法はまちまちであり「カルノーの定理や理想気体の状態方程式から定義できる自然な温度」を指すこともあれば、「温度単位としてケルビンを選んだ場合の温度」ないし「絶対零度を基準点とする温度」のようなより限定された意味で用いられることもある。 気体分子運動論によれば分子が持つ運動エネルギーの期待値は絶対零度において 0 となる。このとき、分子の運動は完全に停止していると考えられる。しかしながら、極低温の環境において古典力学に基づく運動論は完全に破綻するため、そのような古典的な描像は意味を持たない。.

温度と熱力学温度 · 熱力学温度と絶対零度 · 続きを見る »

物質

物質(ぶっしつ)は、.

温度と物質 · 物質と絶対零度 · 続きを見る »

華氏

氏度(カしど、、記号: )は、数種ある温度のうちのひとつであり、ケルビンの1.8分の1 である。真水の凝固点を32カ氏温度、沸騰点を212カ氏温度とし、その間を180等分して1カ氏度としたことに由来する。 ドイツの物理学者ガブリエル・ファーレンハイトが1724年に提唱した。カ氏度は他の温度と同様「度」の単位がつけられ、他の温度による値と区別するためにファーレンハイトの頭文字を取って“”と書き表される。「32 」は日本語では「カ氏32度」、英語では“32 degrees Fahrenheit”または“32 F”と表現される。.

温度と華氏 · 絶対零度と華氏 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

温度と量子力学 · 絶対零度と量子力学 · 続きを見る »

上記のリストは以下の質問に答えます

温度と絶対零度の間の比較

絶対零度が31を有している温度は、106の関係を有しています。 彼らは一般的な11で持っているように、ジャカード指数は8.03%です = 11 / (106 + 31)。

参考文献

この記事では、温度と絶対零度との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »