ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

水力発電と電気

ショートカット: 違い類似点ジャカード類似性係数参考文献

水力発電と電気の違い

水力発電 vs. 電気

水力発電(すいりょくはつでん、hydroelectricity)とは、水力で羽根車を回し、それによる動力で発電機を回して電気エネルギーを得る(発電を行う)方式のことである。. 電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

水力発電と電気間の類似点

水力発電と電気は(ユニオンペディアに)共通で14ものを持っています: 化石燃料トーマス・エジソンエネルギージュールジョージ・ウェスティングハウス再生可能エネルギー直流発電機発電所運動エネルギー高さ質量電力摩擦

化石燃料

化石燃料(かせきねんりょう、fossil fuel)は、地質時代にかけて堆積した動植物などの死骸が地中に堆積し、長い年月をかけて地圧・地熱などにより変成されてできた、言わば化石となった有機物のうち、人間の経済活動で燃料として用いられる(または今後用いられることが検討されている)ものの総称である。.

化石燃料と水力発電 · 化石燃料と電気 · 続きを見る »

トーマス・エジソン

トーマス・アルバ・エジソン(Thomas Alva Edison, (トマス・アルヴァ・エディスン)トーマスではなくトマス・エジソンと表記することも多い。, 1847年2月11日 - 1931年10月18日)は、アメリカ合衆国の発明家、起業家。スポンサーのJPモルガン、配下のサミュエル・インサル、そしてメロン財閥と、電力系統を寡占した。 日本では長らく「エジソン」という表記が定着しているが、 "di"()を意識して「エディソン」「エディスン」と表記する場合もある。.

トーマス・エジソンと水力発電 · トーマス・エジソンと電気 · 続きを見る »

エネルギー

ネルギー(、)とは、.

エネルギーと水力発電 · エネルギーと電気 · 続きを見る »

ジュール

ュール(joule、記号:J)は、エネルギー、仕事、熱量、電力量の単位である。その名前はジェームズ・プレスコット・ジュールに因む。 1 ジュールは標準重力加速度の下でおよそ 102.0 グラム(小さなリンゴくらいの重さ)の物体を 1 メートル持ち上げる時の仕事に相当する。.

ジュールと水力発電 · ジュールと電気 · 続きを見る »

ジョージ・ウェスティングハウス

ョージ・ウェスティングハウス・ジュニア(George Westinghouse, Jr、1846年10月6日 - 1914年3月12日) は、アメリカ合衆国の技術者、実業家。鉄道車両用の空気ブレーキ等を発明。また、それらの発明を産業として発展させた、電気産業の先駆者である。 ウェスティングハウスは、アメリカにおける初期の電力システムの建設に関してトーマス・エジソンのライバルの1人であった。エジソンが主張した直流送電システムに対して、ウェスティングハウスの交流送電システムは最終的に勝利を収めることになった。1911年に彼はアメリカ電気技術者協会(AIEE: American Institute of Electrical Engineers、後のIEEE)から「交流システムの開発に関する賞賛に値する業績」に対してエジソンメダルを受賞した。.

ジョージ・ウェスティングハウスと水力発電 · ジョージ・ウェスティングハウスと電気 · 続きを見る »

再生可能エネルギー

住宅用太陽光発電設備 柳津西山地熱発電所(日本) 再生可能エネルギー(さいせいかのうエネルギー、renewable energy)は、広義には、太陽・地球物理学的・生物学的な源に由来し、自然界によって利用する以上の速度で補充されるエネルギー全般を指す。狭義には、多彩な利用形態のうちの一部を指す(#定義節を参照)。 太陽光、風力、波力・潮力、流水・潮汐、地熱、バイオマス等、自然の力で定常的(もしくは反復的)に補充されるエネルギー資源より導かれ、発電、給湯、冷暖房、輸送、燃料等、エネルギー需要形態全般にわたって用いる。電力系統はスマートグリッドが主流となりつつある。 有限な地下資源・枯渇性資源の欠乏・価格高騰や地球温暖化を防止する目的だけでなく、「新たな利点を有するエネルギー源等」として近年利用が増加している、2010年時点では世界の新設発電所の約1/3(大規模水力を除く)を占める再生可能エネルギーの割合を増やし、資源が偏在する化石燃料への依存を減らす事は安全保障の観点からも望ましい。。年間投資額は2110億ドルに達している(右図及び#利用状況と見通しを参照)。スマートグリッド事業が呼び水となっている。.

再生可能エネルギーと水力発電 · 再生可能エネルギーと電気 · 続きを見る »

直流

流の波形 直流(ちょくりゅう、Direct Current, DC)は、時間によって大きさが変化しても流れる方向(正負)が変化しない「直流電流」の事である。同様に、時間によって方向が変化しない電圧を直流電圧という。狭義には、方向だけでなく大きさも変化しない電流、電圧のことを指し、流れる方向が一定で、電流・電圧の大きさが変化するもの(右図の下2つ)は脈流(pulsating current)という。直流と異なり、周期的に方向が変化する電流を交流という。.

水力発電と直流 · 直流と電気 · 続きを見る »

発電機

電機(はつでんき、electrical generator)は、電磁誘導の法則を利用して、機械的エネルギー(仕事)から電気エネルギー(電力)を得る機械(電力機器)である。 自動車やオートバイなどのエンジンに付いている発電機、自転車の前照灯に直結されている発電機はオルタネーター、ダイナモとも呼ばれ、電気関係の一部ではジェネレータと呼ばれることがある。 構造が電動機と近い(原理は同一で、電動機から逆に電気を取り出す事が出来る。より具体的には、模型用モーターの電極に豆電球を繋ぎ、軸を高速で回転させると豆電球が発光する。実用的にはそれぞれに特化した異なる構造をしている)ことから、電動機で走行する鉄道車両やハイブリッドカーにおいては電動機を発電機として利用してブレーキ力を得ること(発電ブレーキ)や、さらに発生した電力を架線やバッテリーに戻すこと(回生ブレーキ)も可能である。 発電機の動力源が電動機のものについては電動発電機を参照。.

水力発電と発電機 · 発電機と電気 · 続きを見る »

発電所

電所(はつでんしょ)は発電設備を備え、発電を主目的に行う施設である。 発電所は、電力を作るための発電装置とこれに関連する設備、および電気を消費側に送出する送電設備、そして運用・管理を行う人的組織から構成される。 電力会社のような企業体が公共の電力供給用の発電を行う施設を指す場合が多いが、一部には製鉄所やショッピングセンターのような自家消費を主目的とする私的な発電施設も発電所である。 風力発電塔も発電所であるが、一般には「風力発電の風車」と呼ばれることが多く、発電所とは呼ばれない傾向がある。.

水力発電と発電所 · 発電所と電気 · 続きを見る »

運動エネルギー

運動エネルギー(うんどうエネルギー、)は、物体の運動に伴うエネルギーである。物体の速度を変化させる際に必要な仕事である。英語の は、「運動」を意味するギリシア語の (kinesis)に由来する。この用語は1850年頃ウィリアム・トムソンによって初めて用いられた。.

水力発電と運動エネルギー · 運動エネルギーと電気 · 続きを見る »

高さ

さ(たかさ)とは、垂直方向の長さのことである。重力が働く環境下では、重力方向の長さを指す。また、空間的な物理量としての高さ以外に、温度・比率・頻度・価格なども「高さ」で表現するのが一般的である。 高さが大きいことを高い、高さが小さいことを低いと言う。.

水力発電と高さ · 電気と高さ · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

水力発電と質量 · 質量と電気 · 続きを見る »

電力

電力(でんりょく、electric power)とは、単位時間に電流がする仕事(量)のことである。なお、「電力系統における電力」とは、単位時間に電気器具によって消費される電気エネルギーを言う。国際単位系(SI)においてはワット が単位として用いられる。 なお、電力を時間ごとに積算したものは電力量(electric energy)と呼び、電力とは区別される。つまり、電力を時間積分したものが電力量である。.

水力発電と電力 · 電力と電気 · 続きを見る »

摩擦

フラクタル的な粗い表面を持つ面どうしが重なり、静止摩擦がはたらいている様子のシミュレーション。 摩擦(まさつ、friction)とは、固体表面が互いに接しているとき、それらの間に相対運動を妨げる力(摩擦力)がはたらく現象をいう。物体が相対的に静止している場合の静止摩擦と、運動を行っている場合の動摩擦に分けられる。多くの状況では、摩擦力の強さは接触面の面積や運動速度によらず、荷重のみで決まる。この経験則はアモントン=クーロンの法則と呼ばれ、初等的な物理教育の一部となっている。 摩擦力は様々な場所で有用なはたらきをしている。ボルトや釘が抜けないのも、結び目や織物がほどけないのも摩擦の作用である。マッチに点火する際には、マッチ棒の頭とマッチ箱の側面との間の摩擦熱が利用される。自動車や列車の車輪が駆動力を得るのも、地面との間にはたらく摩擦力(トラクション)の作用である。 摩擦力は基本的な相互作用ではなく、多くの要因が関わっている。巨視的な物体間の摩擦は、物体表面の微細な突出部()がもう一方の表面と接することによって起きる。接触部では、界面凝着、表面粗さ、表面の変形、表面状態(汚れ、吸着分子層、酸化層)が複合的に作用する。これらの相互作用が複雑であるため、第一原理から摩擦を計算することは非現実的であり、実証研究的な研究手法が取られる。 動摩擦には相対運動の種類によって滑り摩擦と転がり摩擦の区別があり、一般に前者の方が後者より大きな摩擦力を生む。また、摩擦面が流体(潤滑剤)を介して接している場合を潤滑摩擦といい、流体がない場合を乾燥摩擦という。一般に潤滑によって摩擦や摩耗は低減される。そのほか、流体内で運動する物体が受けるせん断抵抗(粘性)を流体摩擦もしくは摩擦抵抗ということがあり、また固体が変形を受けるとき内部の構成要素間にはたらく抵抗を内部摩擦というが、固体界面以外で起きる現象は摩擦の概念の拡張であり、本項の主題からは離れる。 摩擦力は非保存力である。すなわち、摩擦力に抗して行う仕事は運動経路に依存する。そのような場合には、必ず運動エネルギーの一部が熱エネルギーに変換され、力学的エネルギーとしては失われる。たとえば木切れをこすり合わせて火を起こすような場合にこの性質が顕著な役割を果たす。流体摩擦(粘性)を受ける液体の攪拌など、摩擦が介在する運動では一般に熱が発生する。摩擦熱以外にも、多くのタイプの摩擦では摩耗という重要な現象がともなう。摩耗は機械の性能劣化や損傷の原因となる。摩擦や摩耗はトライボロジーという科学の分野の一領域である。.

摩擦と水力発電 · 摩擦と電気 · 続きを見る »

上記のリストは以下の質問に答えます

水力発電と電気の間の比較

電気が292を有している水力発電は、123の関係を有しています。 彼らは一般的な14で持っているように、ジャカード指数は3.37%です = 14 / (123 + 292)。

参考文献

この記事では、水力発電と電気との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »