ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

気候変動

索引 気候変動

南極ボストーク湖の氷床コアに記録された過去40万年間の気温、二酸化炭素濃度、ダスト量の変化。 気候変動(きこうへんどう、)は、様々な時間スケールにおける、気温、降水量、雲などの変化を指し示す用語として、広く用いられている。特に環境問題の文脈では、地球の表面温度が長期的に上昇する現象、すなわち地球温暖化とその影響を、包括的に気候変動とよぶことが多い。 気象学の用語としては本来、平年の平均的な気候が長期的な時間スケールで変化する現象は気候変化(climate change)と呼ばれる。気候変動(climatic variation)は、平年の平均的な気候からの偏差という意味で用いられ、気候変化とは区別される。 しかし近年では2つの用語を混ぜて利用したり、独自の定義に基づいて用語を使い分けたりする場合もある。例えば、国連のUNFCCC(気候変動枠組条約)ではclimate changeという用語が人為的な変化、climate variabilityが非人為的な変化にあてられているIPCC Technical Papers II and III, February 1997 。 また、IPCCにおいては同じclimate changeという用語が人為的・非人為的変化の両方をまとめて表記するために用いられ、日本語訳においては(「気候変動」を内包する言葉として)気候変化と表記されている。(IPCC第4次評価報告書#使われている表記も参照).

47 関係: 太陽太陽光太陽活動周期太陽放射小氷期中世の温暖期地球地球温暖化化石燃料北極振動北極海ミランコビッチ・サイクルメタンボンドサイクルヒトフィードバックアルベドエルニーニョ・南方振動エアロゾル国際連合噴火Climatico石炭紀第四紀環境問題炭素循環生物ポンプ産業革命熱塩循環軌道要素降水量IPCC氷床コア氷河時代永久凍土気候変動に関する政府間パネル気候変動枠組条約気候モデル気候サイクル気温温室効果温室効果ガス潮汐力成層圏準2年周期振動海塩粒子放射強制力

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。.

新しい!!: 気候変動と太陽 · 続きを見る »

太陽光

雲間から差す太陽光。 太陽光(たいようこう、sunlight)とは、太陽が放つ光である。日光(にっこう)とも言う。地球における生物の営みや気候などに多大な影響を与えている。人類も、太陽の恵みとも言われる日の光の恩恵を享受してきた。.

新しい!!: 気候変動と太陽光 · 続きを見る »

太陽活動周期

400年間の太陽黒点の歴史 現在の第24太陽周期の予測では、2013年9月に約66個で極大を迎えるとされたが、2011年末に強いピークがあったため、2012年2月に既に黒点の数は67個に達し、少なくとも公式な最大値となっている。この数は、第14太陽周期の1906年2月に最大値64.2個だった時以来の少なさである。 太陽活動周期(たいようかつどうしゅうき、Solar cycle)は、太陽の活動(太陽放射のレベルや物質の放出等)や見かけ(太陽黒点の数やフレア等)の周期的な変化である。約11年周期となる。太陽の見かけの変化やオーロラの変化として、数百年に渡って観測されてきた。 太陽の変化は、太陽から地球に達する放射の量を周期的に変化させ、宇宙天気、地球の天気や気候等の変化を引き起こす。 非周期的変動とともに、太陽変動の1つである。 太陽の磁場の進化 内部の太陽流によって誘導される磁気流体力学的ダイナモ作用によって、太陽活動周期は以下の役割を担う。.

新しい!!: 気候変動と太陽活動周期 · 続きを見る »

太陽放射

太陽放射(たいようほうしゃ)とは、太陽が出す放射エネルギーのこと。日射とも呼ばれる。特に電磁波の放射を指すことが多い。太陽放射のスペクトルから、太陽の黒体放射温度は約5800 Kと見積もられる。太陽放射の約半分は電磁スペクトルでいう可視光線であり、残り半分は赤外線や紫外線が占める。光とも呼ばれるこれら3つの電磁波が太陽放射の大部分を占めるため、太陽放射により放出される電磁波のことを太陽光とも言う。 太陽放射は主に、日射計や日照計で観測・測定される。.

新しい!!: 気候変動と太陽放射 · 続きを見る »

小氷期

小氷期(しょうひょうき、英:Little Ice Age, LIA)とは、ほぼ14世紀半ばから19世紀半ばにかけて続いた寒冷な期間のことである。小氷河時代、ミニ氷河期ともいう。この気候の寒冷化により、「中世の温暖期」として知られる温和な時代は終止符を打たれた。当初、小氷期は全球的な現象だったと考えられていたが現在はその規模に疑問の声が投げかけられている。例えば、過去1,000年間の北半球の気温の推定値は明白な寒冷期を示してはいない。気候変動に関する政府間パネル(IPCC)は、小氷期を「期間中の気温低下が1℃未満に留まる、北半球における弱冷期」と記述している。なお、氷河学的にはこの間や現在なども含めて氷期の中でも比較的温暖な時期が続く、間氷期にあたる。.

新しい!!: 気候変動と小氷期 · 続きを見る »

中世の温暖期

過去2000年の温度。複数のデータを同時に表示したもの。(中世の温暖期.

新しい!!: 気候変動と中世の温暖期 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

新しい!!: 気候変動と地球 · 続きを見る »

地球温暖化

1940年–1980年の平均値に対する1999年から2008年の地表面の平均気温の変化 1990年–2010 年9月22日年の平均値に対する2070年から2100年の地表面の平均気温変化量の予測 地球温暖化(ちきゅうおんだんか、Global warming)とは、気候変動の一部で、地球表面の大気や海洋の平均温度が長期的に上昇する現象である。最近のものは、温室効果ガスなどの人為的要因や、太陽エネルギーの変化などの環境的要因によるものであるといわれている。単に「温暖化」とも言われている。.

新しい!!: 気候変動と地球温暖化 · 続きを見る »

化石燃料

化石燃料(かせきねんりょう、fossil fuel)は、地質時代にかけて堆積した動植物などの死骸が地中に堆積し、長い年月をかけて地圧・地熱などにより変成されてできた、言わば化石となった有機物のうち、人間の経済活動で燃料として用いられる(または今後用いられることが検討されている)ものの総称である。.

新しい!!: 気候変動と化石燃料 · 続きを見る »

北極振動

NOAA) 1950年~2009年の北極振動指数の推移(CPC, NOAA) 北極振動(ほっきょくしんどう、英語:Arctic Oscillation:AO)とは、北極と北半球中緯度地域の気圧が相反して変動する現象のことである。テレコネクション(大気振動)の一種で、気温や上空のジェット気流流路等にも変化をもたらす。冬季にこの振動の幅が大きくなると、北半球の高緯度・中緯度地域で寒波やそれに伴う大雪、異常高温が起きる。.

新しい!!: 気候変動と北極振動 · 続きを見る »

北極海

北極海(濃い青の部分) 北極海(ほっきょくかい、英:Arctic Ocean、羅:Oceanus Arcticusオーケアヌス・アルクティクス)は、ユーラシア大陸、グリーンランド、北アメリカ大陸などによって囲まれた海。国別で言うとアメリカ、ロシア、カナダ、デンマーク、ノルウェーの5カ国に囲まれている。北極点は北極海内にある。北氷洋(ほっぴょうよう)、北極洋(ほっきょくよう)とも呼ばれる。国際水路機関 (IHO) は北極海を大洋と認定しているが、海洋学では大西洋の一部をなす地中海と見なされる。これは北極海の海水循環が、塩分濃度差と温度差に支配され、大西洋に従属しているためである。先住民のイヌイットが生活の場としてきたところである。 高緯度に存在するため、北極点周辺は一年中、その他も冬になると氷に覆われる。ただしノルウェー沖は暖かい大西洋の海水が流れ込むので凍結しない。.

新しい!!: 気候変動と北極海 · 続きを見る »

ミランコビッチ・サイクル

'''ミランコビッチ・サイクルを決定付ける変化要素とその結果'''現在から100万年前までの情報。上から3つの要素は日射量を決定づける要因である。歳差運動(Precession)の周期は3つあり、それぞれ1万9000年、2万2000年、2万4000年である。自転軸の傾斜角(Obliquity)の変化は周期4万1000年。公転軌道の離心率(Eccentricity)変化は周期9万5000年、12万5000年、40万年。この結果、北緯65度における日射量は複雑な変化を示すことが計算できる。氷床規模の変化は日射量の変化と相関が良いように見える。 '''地球の自転軸の傾きの変化'''現在の値は23.4度であるが、22.1度から24.5度の間を変化する。周期は4万1000年 コマの首振り運動と同じ挙動を示す。周期は約2万5800年 '''地球の公転軌道'''実際の離心率とは異なり、楕円であることを極端に強調している ミランコビッチ・サイクル(Milankovitch cycle)とは、地球の公転軌道の離心率の周期的変化、自転軸の傾きの周期的変化、自転軸の歳差運動という3つの要因により、日射量が変動する周期である。1920 - 1930年代に、セルビアの地球物理学者ミルティン・ミランコビッチ(Milutin Milanković)は、地球の離心率の周期的変化、地軸の傾きの周期的変化、自転軸の歳差運動の三つの要素が地球の気候に影響を与えると仮説をたて、実際に地球に入射する日射量の緯度分布と季節変化について当時得られる最高精度の公転軌道変化の理論を用いて非常に正確な日射量長周期変化を計算し、間もなくして放射性同位体を用いた海水温の調査で、その仮説を裏付けた。.

新しい!!: 気候変動とミランコビッチ・サイクル · 続きを見る »

メタン

メタン(Methan (メターン)、methaneアメリカ英語発音: (メセイン)、イギリス英語発音: (ミーセイン)。)は最も単純な構造の炭化水素で、1個の炭素原子に4個の水素原子が結合した分子である。分子式は CH4。和名は沼気(しょうき)。CAS登録番号は 。カルバン (carbane) という組織名が提唱されたことがあるが、IUPAC命名法では非推奨である。.

新しい!!: 気候変動とメタン · 続きを見る »

ボンドサイクル

ボンドサイクル (Bond cycle) とは、次第に寒くなっている亜氷期と亜間氷期が最終氷期に繰り返して2 - 3回起きた後、海に大量の氷山が溢れ、最も寒い亜氷期を起こす。その後に二、三年から十数年の急激な温暖化が到来するという非常に大きな気候変動の周期のことである。 コロンビア大学ラモント-ドハティ地球観測所の地質学者であるの名が由来である。.

新しい!!: 気候変動とボンドサイクル · 続きを見る »

ヒト

ヒト(人、英: human)とは、広義にはヒト亜族(Hominina)に属する動物の総称であり、狭義には現生の(現在生きている)人類(学名: )を指す岩波 生物学辞典 第四版 p.1158 ヒト。 「ヒト」はいわゆる「人間」の生物学上の標準和名である。生物学上の種としての存在を指す場合には、カタカナを用いて、こう表記することが多い。 本記事では、ヒトの生物学的側面について述べる。現生の人類(狭義のヒト)に重きを置いて説明するが、その説明にあたって広義のヒトにも言及する。 なお、化石人類を含めた広義のヒトについてはヒト亜族も参照のこと。ヒトの進化については「人類の進化」および「古人類学」の項目を参照のこと。 ヒトの分布図.

新しい!!: 気候変動とヒト · 続きを見る »

フィードバック

フィードバック(feedback)とは、もともと「帰還」と訳され、ある系の出力(結果)を入力(原因)側に戻す操作のこと。古くは調速機(ガバナ)の仕組みが、意識的な利用は1927年のw:Harold Stephen Blackによる負帰還増幅回路の発明に始まり、サイバネティックスによって広められた。システムの振る舞いを説明する為の基本原理として、エレクトロニクスの分野で増幅器の特性の改善、発振・演算回路及び自動制御回路などに広く利用されているのみならず、制御システムのような機械分野や生物分野、経済分野などにも広く適用例がある。自己相似を作り出す過程であり、それゆえに予測不可能な結果をもたらす場合もある。.

新しい!!: 気候変動とフィードバック · 続きを見る »

アルベド

アルベド(albedo)とは、天体の外部からの入射光に対する、反射光の比である。反射能(はんしゃのう)とも言う。アルベードとも表記する。 0以上、1前後以下(1を超えることもある)の無次元量であり、0 – 1の数値そのままか、0 % – 100 %の百分率で表す。.

新しい!!: 気候変動とアルベド · 続きを見る »

エルニーニョ・南方振動

ルニーニョ・南方振動(エルニーニョ・なんぽうしんどう、英語:El Niño-Southern Oscillation、ENSO、エンソ)とは、.

新しい!!: 気候変動とエルニーニョ・南方振動 · 続きを見る »

エアロゾル

アロゾル (aerosol) とは、化学上は、分散相が固体または液体またはその両方であり、連続相が気体(通常は空気)であるゾルであると定義されている。一方、化学品の分類および表示に関する世界調和システムGHSでは、Aerosols (エアゾールと表記される)の定義はエアゾール噴霧器(中身を含めていう)のことである。 この記事では化学上の"エアロゾル"を扱う。 分散媒が気体の分散系、つまり、気体の中に微粒子が多数浮かんだ物質である。気中分散粒子系、煙霧体ともいう。エアロゾル中の微粒子(あるいはエアロゾルの別名)を煙霧質(えんむしつ)または気膠質という。なお俗に、微粒子のことをエアロゾルと呼ぶことがあるが間違いである。 ゾルとは分散媒が液体のコロイドのことであり、エアロゾルはそれにエアロ(空気)を付けた言葉である。ただし、分散媒は空気に限らずさまざまな気体があり、たとえばスプレーによるエアロゾルの分散媒はプロパンなどである。また、コロイド(粒子が約100nm以下)に限らず、より大きい粒子のものもある。 微粒子のサイズは、10nm程度から1mm程度までさまざまである。ある程度大きなもの(定義はさまざまだが、1µm~、0.2~10µm など)を塵埃(じんあい)という。.

新しい!!: 気候変動とエアロゾル · 続きを見る »

国際連合

国際連合(こくさいれんごう、United Nations、联合国、聯合國、Organisation des Nations unies、略称は国連(こくれん)、UN、ONU)は、国際連合憲章の下、1945年に設立された国際機関である。 第二次世界大戦を防げなかった国際連盟の反省を踏まえ、1945年10月24日、51ヵ国の加盟国で設立された。主たる活動目的は、国際平和と安全の維持(安全保障)、経済・社会・文化などに関する国際協力の実現である。 英語表記の「United Nations」は、第二次世界大戦中の枢軸国に対していた連合国が自陣営を指す言葉として使用していたものが継続使用されたものであるが、日本語においては誤訳され「国際連合」と呼ばれる。 2017年5月現在の加盟国は193か国であり、現在国際社会に存在する国際組織の中では、敵国条項が存在するなど第二次世界大戦の戦勝国の色が強いものの、最も広範・一般的な権限と、普遍性を有する組織である。.

新しい!!: 気候変動と国際連合 · 続きを見る »

噴火

火山噴火 リダウト山の大噴火 噴火(ふんか、)とは、火山からマグマや火山灰などが比較的急速に地表や水中に噴き出すことである。火山活動(かざんかつどう、)の一つで、マグマの性質によって、規模や様式にさまざまなものがある。気象庁では、火口から固形物が水平あるいは垂直距離でおよそ100 - 300mの範囲を越したものを「噴火」として記録することになっている。.

新しい!!: 気候変動と噴火 · 続きを見る »

Climatico

Climaticoは、世界中の最新の気候変動政策を分析、報告するために設立された調査グループである。Climaticoは、世界で唯一のG20の気候変動政策の調査グループである。調査メンバーは、例外を除きオックスフォード大学又はロンドン・スクール・オブ・エコノミクス(LSE)の大学院の卒業生である。 Climaticoは、世界中、特に気候変動における主要国における気候政策に関するアクションの研究を行っている。主要国には、20か国財務大臣・中央銀行総裁会議(G20財務大臣・中央銀行総裁会議)国(アルゼンチン、オーストラリア、ブラジル、カナダ、中国、フランス、ドイツ、インド、インドネシア、イタリア、日本、メキシコ、ロシア、サウジアラビア、南アフリカ、韓国、トルコ、イギリス、および欧州連合)が含まれる。.

新しい!!: 気候変動とClimatico · 続きを見る »

石炭紀

石炭紀(せきたんき、Carboniferous period)は、地質時代の区分のひとつ。古生代の後半で、デボン紀の後、ペルム紀の前の時代を指し、これはおおよそ現在より3億5920万年前から2億9900万年前までの時期にあたる。この期間はデボン紀末の大量絶滅からペルム紀直前の数百万年に及ぶ氷河期で区切られている。 名前の由来はこの時代の地層から多く石炭を産することによる。この地層から石炭を産するのは当時非常に大きな森林が形成されていたことの傍証となる。 北米では石炭紀の前半をミシシッピ紀(Mississippian)、後半をペンシルベニア紀ペンシルバニア紀、ペンシルヴァニア紀とも書かれる。 (Pennsylvanian) と呼ぶ研究者もいる。これらはおおよそ3億2300万年前よりも前か後かで分けられる。 サイモン・ウィンチェスター著、野中邦子訳『世界を変えた地図 -ウィリアム・スミスと地質学の誕生-』早川書房 2004年 84ページ。 -->.

新しい!!: 気候変動と石炭紀 · 続きを見る »

第四紀

四紀(だいよんき一部の地学事典には「だいしき」と記述されているが、文部省『学術用語集 地学編』(日本学術振興会、1984年、ISBN 4-8181-8401-2、)の表記は「Daiyonki」である。『学術用語集』編纂の経緯に鑑み、ここでは「だいよんき」とした。なお、日本第四紀学会公式サイトにおいて、「『だいよんき』と『だいしき』のどちらが正しいのか」との質問に対し、「『だいよんき』と『だいしき』のどちらが正しいということはありませんが、一般に広く用いられているのは前者です。日本第四紀学会の読み方としても「だいよんき」が使われます。」と回答している。、Quaternary period)は地質時代の一つで、258万8000年前から現在までの期間。 他の地質時代が生物相の大幅な変化(特に大量絶滅)を境界として定められたのに対し、第四紀は人類の時代という意味で決められた。したがって、古人類学の進展に伴い次々に古い原人が発見されるとともに第四紀の始まる年代も変化していった。現在ではヒト属の出現を基準とし、地質層序や気候変動を併用して決定している。 第四紀より古い地層を、かつては三紀層と呼んでいたが、今では古第三紀・新第三紀に分かれている(#語源)。.

新しい!!: 気候変動と第四紀 · 続きを見る »

環境問題

水質汚染により泡が浮かんだ河川 酸性雨により溶けた石像 大気汚染の原因となる排煙 環境問題(かんきょうもんだい、Environmental threats, Environmental issues, Environmental problems)は、人類の活動に由来する周囲の環境の変化により発生した問題の総称であり、これは、地球のほかにも宇宙まで及んでいる問題である。.

新しい!!: 気候変動と環境問題 · 続きを見る »

炭素循環

炭素循環の概念図。黒の数値はそれぞれのリザーバーに存在する炭素量、青の数値はリザーバー間での年間の炭素の移動量。単位GtC('''G'''iga'''t'''ons of '''C'''arbon)はギガトン(10億トン) 炭素循環(たんそじゅんかん、)とは、地球上の生物圏、岩石圏、水圏、大気圏の間で行われる炭素の交換という生化学的な循環で、これらは炭素の保管庫(リザーバー)となっている。 炭素循環は、一般にこの4つのリザーバー、具体的には大気、陸域生物圏(陸水系は普通ここに含まれる)、海洋、堆積物(化石燃料を含む)と、その間を相互に移動する経路で成り立っている。年間の炭素の移動は、リザーバー間で起こる様々な化学的、物理学的、地質学的、生物学的なプロセスを経て行われる。地球表層付近での最も大きな炭素の保管場所は海洋である。 全球の炭素収支は炭素リザーバーの間、もしくは特定の循環(特に大気 - 海洋間)での炭素交換のバランス(吸収と放出)で示される。炭素収支を吟味することで、リザーバーが二酸化炭素の吸収源となっているのか発生源となっているのかを判断することができる。.

新しい!!: 気候変動と炭素循環 · 続きを見る »

生物ポンプ

生物ポンプ(せいぶつぽんぷ)とは、生物海洋学において、海洋表層(有光層)から海洋内部へ生物学的に炭素を輸送する経路を指す。 炭素は主に粒子状の状態、例えば生物の遺骸(藻類マットを含む)や動物の糞粒の状態で沈降することで運ばれる。一部の炭素は溶解した有機炭素(DOC)となって、沈降流という物理的な運搬過程で海底に運ばれる。 深海に沈む炭素には、有機炭素と無機炭素(炭酸カルシウムなど)の両方ある。前者は全ての生物の構成物質であり、後者は(例えば石灰質ナノプランクトンや有孔虫のような)カルシウムの殻を持つ生物の構成物質である。これらの生物源物質の違いを区別する際には、有機炭素の運搬は軟組織ポンプ、無機炭素の運搬は硬組織ポンプと呼ぶ。 有機物質の場合、バクテリアの呼吸作用などにより、有機炭素から溶存二酸化炭素となって海水に戻される。炭酸カルシウムの場合は、局所的な炭酸塩の化学過程に依存する。しかしこれらの過程は普通光合成過程よりも遅いので、結果的に生物ポンプは炭素を表層から海洋の深部へ運んでいることになる。  生物ポンプは物理化学的な溶解ポンプやアルカリポンプと関連付けて考えられている。 関連するプロセスとして、大陸棚ポンプという考え方が近年提唱されている。.

新しい!!: 気候変動と生物ポンプ · 続きを見る »

産業革命

ワットの改良蒸気機関。ワット式蒸気機関の開発は動力源の開発における大きな画期であり、産業革命を象徴するものである 産業革命(さんぎょうかくめい、Industrial Revolution)は、18世紀半ばから19世紀にかけて起こった一連の産業の変革と、それに伴う社会構造の変革のことである。 産業革命において特に重要な変革とみなされるものには、綿織物の生産過程における様々な技術革新、製鉄業の成長、そしてなによりも蒸気機関の開発による動力源の刷新が挙げられる。これによって工場制機械工業が成立し、また蒸気機関の交通機関への応用によって蒸気船や鉄道が発明されたことにより交通革命が起こったことも重要である。 経済史において、それまで安定していた一人あたりのGDP(国内総生産)が産業革命以降増加を始めたことから、経済成長は資本主義経済の中で始まったとも言え、産業革命は市民革命とともに近代の幕開けを告げる出来事であったとされる。また産業革命を「工業化」という見方をする事もあり、それを踏まえて工業革命とも訳される。ただしイギリスの事例については、従来の社会的変化に加え、最初の工業化であることと世界史的な意義がある点を踏まえ、一般に産業革命という用語が用いられている。.

新しい!!: 気候変動と産業革命 · 続きを見る »

熱塩循環

熱塩循環(ねつえんじゅんかん、)は、おもに中深層(数百メートル以深)で起こる地球規模の海洋循環を指す言葉である(水深千数百メートル以下での海洋循環を指すという説もある。)。語源の thermo は熱、haline は塩分の意味で海水の密度はこの熱と塩分により決定される。メキシコ湾流のような表層海流が、赤道大西洋から極域に向かうにつれて冷却し、ついには高緯度で沈み込む(北大西洋深層水の形成)。この高密度の海水は深海底に沈み、1200年後に北東太平洋に達して再び表層に戻る。その間それぞれの海盆の間で広範囲に渡って混合が起こり均一化することで海洋の世界的なシステムを作っている。この過程で、水塊は(熱)エネルギーと物質(固体、溶解物質、ガス)を運んで地球上を移動する。このように、循環現象は地球の気候に大きな影響を与えている。 熱塩循環と表層で起こる風成循環とを合わせて、海洋大循環と呼ぶ。熱塩循環は大循環、深層大循環、グローバルコンベアーベルトとも呼ばれる。海水が南北に移動し表面近くと深層の間を行き来することにより特徴付けられるため、子午面循環(英語で meridional overturning circulation)と呼ばれることもある。.

新しい!!: 気候変動と熱塩循環 · 続きを見る »

軌道要素

軌道要素(きどうようそ、英語:orbital elements)とは、惑星や彗星、あるいは人工衛星のようにある天体の周囲を公転する天体の運動する軌跡(軌道)を指定するために使用されるパラメータである。 ある天体が重力によって公転する場合、その軌道は重力源となる天体を1つの焦点とする二次曲線を描く。二次曲線の形状を指定するためには、2つのパラメータが必要である。 また、さらにその軌道が存在する平面を指定するために2つのパラメータが必要である。その平面上での軌道がどちらの方向を向いているのかをさらに指定するために1つのパラメータが必要である。 それから、天体がある時刻に軌道上のどの位置に存在するのかを指定するために、少なくとも1組の時刻と軌道上の位置のデータが必要である。 天体の軌道の決定とは、その天体の観測位置をもっとも良く説明できる軌道要素を導き出すことである。軌道の形状、平面、向きを定める5つの独立したパラメータを求めるためには、5つの独立した観測データが必要である。1回の観測で赤経、赤緯の2つの独立した観測データの組が得られる。そのため、軌道の決定には少なくとも3回の観測が必要である。しかし短期間の間の3回の観測では誤差が大きくなる。 パラメータにはいくつかの選び方があり天体の種類などによって使い分けられている。.

新しい!!: 気候変動と軌道要素 · 続きを見る »

積雲 雲(くも)は、大気中にかたまって浮かぶ水滴または氷の粒(氷晶)のことを言う荒木 (2014)、p.22。地球に限らず、また高度に限らず、惑星表面の大気中に浮かぶ水滴や氷晶は雲と呼ばれる。雲を作る水滴や氷晶の1つ1つの粒を雲粒と言う。また地上が雲に覆われていると、霧となる。 気象学の中には雲学という分野も存在する。これは、気象観測の手段が乏しかった20世紀前半ごろまで、気象の解析や予測に雲の形や動きなどの観測情報を多用しており、雲の研究が重要視されたことを背景にしている。気象衛星などの登場によって重要性が薄くなり雲学は衰退してきている。 また、雨や雪などの降水現象の発生源となる現象であり、雲の生成から降水までの物理学的な現象を研究する雲物理学というものもある。.

新しい!!: 気候変動と雲 · 続きを見る »

降水量

降水量(こうすいりょう)とは、大気から地表に落ちた水(氷を含む)の量。雨や雪を気象台の雨量計や、アメダスなどで観測し、計測する。通常、水に換算した体積を単位面積で除した値を mm で表す。.

新しい!!: 気候変動と降水量 · 続きを見る »

IPCC

IPCC.

新しい!!: 気候変動とIPCC · 続きを見る »

氷床コア

氷床コア(ひょうしょうコア、英語:ice core)は氷床から取り出された筒状の氷の柱である。 氷は下に向かうにつれて古くなり、過去に降り積もった雪を保存している。氷床コアはコア掘削機によって南極やグリーンランドなど様々な氷床・氷河の深層に向かって掘り出されており、樹木の年輪や堆積物の年縞(年に一枚ずつ縞状に堆積したもの)など他の自然物の記録のように、気候に関する様々な情報を含んでいる。その記録は(地質学的には)短い時間だが、高精度の情報を得ることが出来る。 氷床コアの上層は一枚一年に相当するが、場合によっては一シーズンに一枚など、それぞれの年に降った雪が残っており、風成塵、火山灰、大気成分、放射性物質を含んでいる。氷の深度が深くなるにつれ、自重により一年分に相当する氷の層は厚さは薄くなり、年縞は不明瞭になってゆく。 適切な場所から得られるコアは撹乱が少ないので、数十万年にさかのぼる詳細な気候変化の記録が得られる。その記録には、気温、海水量、蒸発量、化学物質や低層大気の成分、火山活動、太陽活動、海洋の生物生産量等様々な気候に関する指標が含まれる。これらの記録は同じ層では同じ年の状態を保存しており、氷床コアを古気候研究に非常に有用なものにしている。.

新しい!!: 気候変動と氷床コア · 続きを見る »

氷河時代

氷河時代(ひょうがじだい、ice age)は、地球の気候が寒冷化し、地表と大気の温度が長期にわたって低下する期間で、極地の大陸氷床や高山域の氷河群が存在し、または拡大する時代である。長期に及ぶ氷河時代のうち、律動する個々の寒冷な気候の期間は氷期と呼ばれ、氷期と氷期の間の断続的な温暖期は間氷期と呼ばれる。氷河学の専門用語では、「氷河時代」 (ice age) は北半球と南半球の両方において広大な氷床が存在することを示唆する。この定義によれば、我々は氷河時代の間氷期―完新世―の只中にいることになる。最後の氷河時代(第四紀氷河時代)は更新世が開始した約260万年前に始まり、それは今も、北極、そして南極大陸に氷床が存在していることからいえる。 なお、当項目の記述内容は、まだ立証が十分でない仮説であったり、論争が続いていたりするような内容を含む。.

新しい!!: 気候変動と氷河時代 · 続きを見る »

永久凍土

北半球での凍土の分布。紫の地域が永久凍土 永久凍土中の氷楔 ポリゴンと呼ぶ凍土が解けた様々な形の水溜まり 永久凍土(えいきゅうとうど)とは少なくとも2冬とその間の1夏を含めた期間より長い間連続して凍結した状態の土壌を指す。 英語では、永久凍土のことを permafrost と表記するが、permanently frozen ground(永久に凍った土壌)の省略語で1945年に S. W. MULLERによって使われた木下誠一、 地学雑誌 Vol.85 (1976) No.1 P10-27。.

新しい!!: 気候変動と永久凍土 · 続きを見る »

気候変動に関する政府間パネル

気候変動に関する政府間パネル(きこうへんどうにかんするせいふかんパネル、英語:Intergovernmental Panel on Climate Change、略称:IPCC)は、国際的な専門家でつくる、地球温暖化についての科学的な研究の収集、整理のための政府間機構である。学術的な機関であり、地球温暖化に関する最新の知見の評価を行い、対策技術や政策の実現性やその効果、それが無い場合の被害想定結果などに関する科学的知見の評価を提供している。数年おきに発行される「評価報告書」(Assessment Report)は地球温暖化に関する世界中の数千人の専門家の科学的知見を集約した報告書であり、国際政治および各国の政策に強い影響を与えつつある。 国際連合環境計画(United Nations Environment Programme: UNEP)と国際連合の専門機関にあたる世界気象機関(World Meteorological Organization: WMO)が1988年に共同で設立した。 気候変化に関する科学的な判断基準の提供を目的としており、地球温暖化に関する科学的知見の集約と評価が主要な業務である(IPCC)。数年おきに地球温暖化に関する「評価報告書」(Assessment Report)を発行するほか、特定のテーマについて特別報告(Special Report)、技術報告書(Technical Paper)、方法論報告書(Methodology Report)などを発行している((財)地球・人間環境フォーラム)。 本来は、世界気象機関(WMO)の一機関であり、国際連合の気候変動枠組条約とは直接関係のない組織であったが、条約の交渉に同組織がまとめた報告書が活用されたこと、また、条約の実施にあたり科学的調査を行う専門機関の設立が遅れたことから、IPCCが当面の作業を代行することとなり現在に至っている。IPCC自体が各国への政策提言等を行うことはないが、国際的な地球温暖化問題への対応策を科学的に裏付ける組織として、間接的に大きな影響力を持つ。アル・ゴアとともに2007年ノーベル平和賞を受賞。.

新しい!!: 気候変動と気候変動に関する政府間パネル · 続きを見る »

気候変動枠組条約

気候変動に関する国際連合枠組条約(きこうへんどうにかんするこくさいれんごうわくぐみじょうやく、英語:United Nations Framework Convention on Climate Change、省略名称:UNFCCC)は、1992年6月3日から6月14日まで、ブラジルの都市リオ・デ・ジャネイロにおいて開催された環境と開発に関する国際連合会議(UNCED)において、採択された地球温暖化問題に関する国際的な枠組みを設定した環境条約である。気候変動に関する国際連合枠組条約(UNFCCC)は、1994年3月21日に、発効された。気候変動に関する国際連合枠組条約は、国連気候変動枠組条約、地球温暖化防止条約などとも呼ばれる。 気候変動に関する国際連合枠組条約の目的は、大気中の温室効果ガス(二酸化炭素、メタン、一酸化二窒素[亜酸化窒素:N2O]など、HFCs、PFCs、SF6)の増加が地球を温暖化し、自然の生態系などに悪影響を及ぼすおそれがあることを、人類共通の関心事であると確認し、大気中の温室効果ガスの濃度を安定化させ、現在および将来の気候を保護することである。気候変動がもたらすさまざまな悪影響を防止するための取り組みの原則、措置などを定めている。.

新しい!!: 気候変動と気候変動枠組条約 · 続きを見る »

気候モデル

気候モデル(きこう -)とは、地球上の大気、海洋などの気候を長期的・量的にシミュレーションするもの。将来の気候の分野において使用される。気象予報において使用される短期的モデルは数値予報モデルと呼ばれるもので、気候モデルとは異なる。.

新しい!!: 気候変動と気候モデル · 続きを見る »

気候サイクル

気候サイクル(きこうサイクル)とは、氷河の氷、海底堆積物、木の年輪などの研究で見出された温度代理指標によって示されるように、地球の表面温度において自然の周期変動をともない、繰り返されている気候パターン(climate pattern)の一種である。 気候サイクルを検出する難しさの一つには、地球の気候がほとんどの時間スケールにおいて非周期的な方式で変化しているということがあげられる。例えば、いま我々は人為的と思われる地球温暖化の時代にいる。さらに大きな時間枠において、地球は最新の氷河時代から脱しつつある。それは気候が過去1万5000年程にわたって変化していることを意味する。そして、度重なる氷河作用(glaciation)によって支配された更新世の時代は、より安定した気候であった中新世と鮮新世から展開している。これらの変化すべてが気候の周期的な挙動をさがす作業を複雑にしている。 それでも、特定または仮定された気候サイクルがいくつかある。それらの範囲は、いくつかの氷河時代にまたがる長期にわたる気候記録で反映される地球の軌道パラメータの周期的挙動(ミランコビッチ・サイクル)から、大西洋数十年規模振動を通り、次のような短期的な周期にまで及んでいる。.

新しい!!: 気候変動と気候サイクル · 続きを見る »

気温

気温(きおん)とは、大気の温度のこと。気象を構成する要素の1つ。通常は地上の大気の温度のことを指す。.

新しい!!: 気候変動と気温 · 続きを見る »

温室効果

温室効果」の名の由来となった温室の例 温室効果(おんしつこうか)(英:Greenhouse effect)とは、大気圏を有する惑星の表面から発せられる放射(電磁波により伝達されるエネルギー)が、大気圏外に届く前にその一部が大気中の物質に吸収されることで、そのエネルギーが大気圏より内側に滞留し結果として大気圏内部の気温が上昇する現象。 気温がビニールハウス(温室)の内部のように上昇するため、この名がある。ただし、ビニールハウスでは地表面が太陽放射を吸収して温度が上昇し、そこからの熱伝導により暖められた空気の対流・拡散がビニールの覆いにより妨げられ気温が上昇するため、大気圏による温室効果とは原理が異なる。温室効果とは、温室同様に熱エネルギーが外部に拡散しづらく(内部に蓄積されやすく)なることにより、原理は異なるものの結果として温室に似た効果を及ぼすことから付けられた名である。 温室効果ガスである二酸化炭素やメタンなどが増加していることが、現在の地球温暖化の主な原因とされている。また、金星の地表温度が470℃に達しているのも、90気圧とも言われる金星大気のそのほとんどが温室効果ガスの二酸化炭素なので、その分、光学的厚さが大きいためとされている。しかし、依然として金星大気の地表温度にはなぞが残っており、他にも少量の水蒸気や硫黄酸化物による光学的厚さの寄与や硫酸の雲の効果が影響しているのではとの説もある。一般に、金星の初期形成過程において、大量の水蒸気が大気中に存在し、いわゆる暴走温室効果が発生したのではないかとの説もあるが異論も存在する。.

新しい!!: 気候変動と温室効果 · 続きを見る »

温室効果ガス

温室効果ガスと排出源の内訳 fast track 2000 project (2000年) 温室効果ガス(おんしつこうかガス、、)とは、大気圏にあって、地表から放射された赤外線の一部を吸収することにより、温室効果をもたらす気体の総称である。対流圏オゾン、二酸化炭素、メタンなどが該当する。近年、大気中の濃度を増しているものもあり、地球温暖化の主な原因とされている。.

新しい!!: 気候変動と温室効果ガス · 続きを見る »

潮汐力

潮汐力(ちょうせきりょく、英語:tidal force)とは、重力によって起こる二次的効果の一種で、潮汐の原因である。起潮力(きちょうりょく)とも言う。潮汐力は物体に働く重力場が一定でなく、物体表面あるいは内部の場所ごとに異なっているために起こる。ある物体が別の物体から重力の作用を受ける時、その重力加速度は、重力源となる物体に近い側と遠い側とで大きく異なる。これによって、重力を受ける物体は体積を変えずに形を歪めようとする。球形の物体が潮汐力を受けると、重力源に近い側と遠い側の2ヶ所が膨らんだ楕円体に変形しようとする。.

新しい!!: 気候変動と潮汐力 · 続きを見る »

成層圏準2年周期振動

成層圏準2年周期振動(せいそうけんじゅんにねんしゅうきしんどう、quasi-biennial oscillation:QBO)とは赤道域の成層圏での風系が約2年周期で規則的に変動する現象のことである。アメリカのR.J. ReedとイギリスのR.A. Ebdonによりそれぞれ独立に発見された。 ラジオゾンデの観測データによる、成層圏中下部(高度31~17km付近)の東西風速分布の断面図。各高度ごとに見ると風向が規則的に変化している。また「風の場」が下へ伝播する様子が分かる。 赤道上空の成層圏では赤道を中心とする南北対称な東風と西風が約1年交代で交互に現れ、その一巡する周期は2年から2年半程度、平均的には26ヶ月である。また西風のピークは20m/s程度、東風のピークは30m/s程度である。このような変動は成層圏界面付近の高度40-50kmで起こり、徐々に下降するが対流圏界面付近ではほとんど見られなくなる。QBOの振幅は赤道で最大で南北には約20°の広がりを持つが、それより高緯度ではほとんど見られない。 QBOが起こる原因としては、対流圏から上空に伝播する重力波の運ぶ運動量との関連が知られている。対流圏からは西向きの位相速度を持った西進重力波、東向きの位相速度を持った東進重力波とも上空に伝播する。しかし成層圏の風が東風であると西進重力波は吸収され、それより上空には東進重力波のみが伝播する。東進重力波が砕波した場合、西風を作るような運動量を置いていき結果、上空が西風に変わる。逆に成層圏が西風の場合、それより上空には西進重力波のみが伝播し東風を作るような運動量を置いていって上空が東風に変わる。この繰り返しにより周期的な風系の変動が起こる。 成層圏で吸収しきれなかった重力波は上部中間圏まで伝播して吸収され、中間圏凖2年周期変動(MQBO)を引き起こす。.

新しい!!: 気候変動と成層圏準2年周期振動 · 続きを見る »

海塩粒子

海塩粒子(かいえんりゅうし)とは、大気中に含まれるエアロゾル粒子の一種で、海洋や塩湖の水(海水)に由来する塩分からなる微粒子のこと。 直感的に理解できる海塩粒子といえば、波浪によって波頭から飛び散ったしぶきが、空気中を落下していくうちに蒸発して、塩分だけが残ったものである。しかし、そのようにして生成されるものは少ない。しぶきは水滴の直径が大き過ぎて蒸発に時間がかかり、析出する塩分も大き過ぎて落下しやすいためである。エアロゾル化する海塩粒子の大部分は、海面に浮かんでいる気泡が破裂した際に空中に舞う微小水滴が蒸発してできたものである。 海塩粒子は、天気が荒れて波浪が強いとき、つまり風の強いときほど多く発生する傾向にある。また、海塩粒子の濃度は海上において高く、陸上では低く内陸になるほど低くなる。また、海塩粒子の流径は、海岸から離れるほど大きくなる傾向にある。 海塩粒子は、エアロゾルとして空中を漂う間に、湿った空気と接して凝結核(雲核)となり、雲を生成する素となる。 また、海塩粒子は海風に乗って海岸の構造物に吹きつけ、金属に付着すると腐食を起こして錆の原因となる。海岸の金属構造物が錆びる原因にはしぶきの直接付着もあるが、しぶきの届かない場所では海塩粒子の影響が大きい。.

新しい!!: 気候変動と海塩粒子 · 続きを見る »

放射強制力

1750年から2005年の間に、地球に+1.66W/m2の放射強制力をもたらしたとされる二酸化炭素の濃度変化。(比較のため気温変化も掲載) 放射強制力(ほうしゃきょうせいりょく)とは、気候学における用語で、地球に出入りするエネルギーが地球の気候に対して持つ放射の大きさのこと。英語の"Radiative forcing"の訳語。正の放射強制力は温暖化、負の放射強制力は寒冷化を起こす。.

新しい!!: 気候変動と放射強制力 · 続きを見る »

ここにリダイレクトされます:

気候変化気候変動問題

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »