ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

次元 (数学)と超球面

ショートカット: 違い類似点ジャカード類似性係数参考文献

次元 (数学)と超球面の違い

次元 (数学) vs. 超球面

数学における対象(図形)の次元(じげん、dimension)は、(やや不正確だが)その対象に属する点を特定するのに必要な座標の数の最小値として定まる。次元はその対象の内在的性質であって、その対象が「どのような空間に埋め込まれるか」ということとは無関係であることに注意すべきである。例えば、平面における単位円上の点は、平面上の点として二つの成分を持つ直交座標系によって特定することもできるけれども、極座標の偏角としての一つの座標のみによっても特定することができるので、単位円は(二次元の平面上に存在するものであるけれども)一次元の対象である。このような内在的な次取り扱いは、日常的な意味で用いられる「次元」とは異なる、数学的な意味での次元の概念を峻別するための根本的な観点である。 ''n''-次元ユークリッド空間 の次元は である。このことを別な種類の空間に対して一般化しようとするとき、「 を -次元たらしめるところのものはいったい何であるか」という問題に直面する。その一つの答えとして、 における球体を固定し、それを小さい半径 の球によって被覆するとき、被覆に必要な小さい球の数のオーダーが であることが挙げられる。この観点からはミンコフスキー次元あるいはより精緻なハウスドルフ次元の概念が導かれる。しかし、先ほどの問いの別な答えとして、例えば における球体の境界が局所的に と見なせることを挙げれば、帰納次元の概念が導かれる。これらの次元の概念は 上では一致するけれども、もっと一般の空間で考えたときには異なるということが起こりうる。 正八胞体(テッセラクト)は四次元図形の例である。数学と関係ない文脈では「正八胞体は四つの次元を持つ」というような「次元」の語の用例が見られるものの、数学用語としての用法では「正八胞体は次元 4 を持つ」とか「正八胞体の次元は 4 である」といったような表現になる。 高次元の概念自体はルネ・デカルトまで遡れるかもしれないけれども、実質的な高次元幾何学が形成され始めるのは19世紀に入ってから、ケイリー、ハミルトン、シュレーフリ、リーマンらの研究を通じてである。1854年にリーマンの Habilitationsschrift、1852年にシュレーフリの Theorie der vielfachen Kontinuität、1843年にハミルトンの四元数の発見、ケイリー数の構成などによって、高次元幾何学の幕は開かれた。 以下、いくつか数学的に重要な次元の定義を説明する。. 数学において、 次元球面(-じげんきゅうめん、n-sphere, n 球面)は普通の球面の ''n'' 次元空間への一般化である。任意の自然数 n に対して、半径 r の n 次元球面は中心点から距離 r にある (n + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 r は任意の正の実数でよい。したがって、原点を中心とする n 次元球面は によって定義される。これは (n + 1) 次元ユークリッド空間内に存在する n 次元多様体である。 特に:.

次元 (数学)と超球面間の類似点

次元 (数学)と超球面は(ユニオンペディアに)共通で6ものを持っています: 位相同型ユークリッド空間八元数直交座標系極座標系数学

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

位相同型と次元 (数学) · 位相同型と超球面 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

ユークリッド空間と次元 (数学) · ユークリッド空間と超球面 · 続きを見る »

八元数

数学における八元数(はちげんすう、octonions; オクトニオン)の全体は実数体上のノルム多元体で、ふつう大文字アルファベットの O を使って、太字の O(あるいは黒板太字の 𝕆)で表される。実数体上のノルム多元体はたった四種類であり、O のほかは、実数の全体 R, 複素数の全体 C, 四元数の全体 H しかない。O はこれらノルム多元体の中で最大のもので、実八次元、これは H の次元の二倍である(O は H を拡大して得られる)。八元数の全体 O における乗法は非可換かつ非結合的だが、弱い形の結合性である冪結合律は満足する。 より広く調べられ利用されている四元数や複素数に比べれば、八元数についてはそれほどよく知られているわけではない。にもかかわらず、八元数にはいくつも興味深い性質があり、それに関連して(例外型リー群が持つような)例外的な構造もいくつも備えている。加えて、八元数は弦理論などといった分野に応用を持っている。 八元数は、ハミルトンの四元数の発見に刺激を受けたジョン・グレイヴスによって1843年に発見され、グレイヴスはこれを octaves と呼んだ。それとは独立にケイリーも八元数を発見しており、八元数のことをケイリー数、その全体をケイリー代数と呼ぶことがある。.

八元数と次元 (数学) · 八元数と超球面 · 続きを見る »

直交座標系

数学における直交座標系(ちょっこうざひょうけい、, )とは、互いに直交している座標軸を指定することによって定まる座標系のことである。平面上の直交座標系ではそれぞれの点に対して一意に定まる二つの実数の組によって点の位置が指定される。同様にして空間上の直交座標系では三つの実数の組によって座標が与えられる。 1637年に発表された『方法序説』において平面上の座標の概念を確立したルネ・デカルトの名を採ってデカルト座標系 (Cartesian coordinate system) とも呼ぶ。.

次元 (数学)と直交座標系 · 直交座標系と超球面 · 続きを見る »

極座標系

極座標系(きょくざひょうけい、polar coordinates system)とは、n 次元ユークリッド空間 R 上で定義され、1 個の動径 r と n − 1 個の偏角 θ, …, θ からなる座標系のことである。点 S(0, 0, x, …,x) を除く直交座標は、局所的に一意的な極座標に座標変換できるが、S においてはヤコビアン が 0 となってしまうから、一意的な極座標表現は不可能である。それは、S に於ける偏角が定義できないことからも明らかである。.

極座標系と次元 (数学) · 極座標系と超球面 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

数学と次元 (数学) · 数学と超球面 · 続きを見る »

上記のリストは以下の質問に答えます

次元 (数学)と超球面の間の比較

超球面が58を有している次元 (数学)は、42の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は6.00%です = 6 / (42 + 58)。

参考文献

この記事では、次元 (数学)と超球面との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »