ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

核酸と転写 (生物学)

ショートカット: 違い類似点ジャカード類似性係数参考文献

核酸と転写 (生物学)の違い

核酸 vs. 転写 (生物学)

RNAとDNA、それぞれの核酸塩基 核酸(かくさん)は、リボ核酸 (RNA)とデオキシリボ核酸 (DNA)の総称で、塩基と糖、リン酸からなるヌクレオチドがホスホジエステル結合で連なった生体高分子である。糖の部分がリボースであるものがRNA、リボースの2'位の水酸基が水素基に置換された2-デオキシリボースであるものがDNAである。RNAは2'位が水酸基であるため、加水分解を受けることにより、DNAよりも反応性が高く、熱力学的に不安定である。糖の 1'位には塩基(核酸塩基)が結合している。さらに糖の 3'位と隣の糖の 5'位はリン酸エステル構造で結合しており、その結合が繰り返されて長い鎖状になる。転写や翻訳は 5'位から 3'位への方向へ進む。 なお、糖鎖の両端のうち、5'にリン酸が結合して切れている側のほうを 5'末端、反対側を 3'末端と呼んで区別する。また、隣り合う核酸上の領域の、5'側を上流、3'側を下流という。. 転写中のDNAとRNAの電子顕微鏡写真。DNAの周りに薄く広がるのが合成途中のRNA(多数のRNAが同時に転写されているため帯状に見える)。RNAポリメラーゼはDNA上をBeginからEndにかけて移動しながらDNAの情報をRNAに写し取っていく。Beginではまだ転写が開始された直後なため個々のRNA鎖が短く、帯の幅が狭く見えるが、End付近では転写がかなり進行しているため個々のRNA鎖が長く(帯の幅が広く)なっている 転写(てんしゃ、Transcription)とは、一般に染色体またはオルガネラのDNAの塩基配列(遺伝子)を元に、RNA(転写産物transcription product)が合成されることをいう。遺伝子が機能するための過程(遺伝子発現)の一つであり、セントラルドグマの最初の段階にあたる。.

核酸と転写 (生物学)間の類似点

核酸と転写 (生物学)は(ユニオンペディアに)共通で18ものを持っています: 塩基対二次構造チミンリボソームリボ核酸ヌクレオチドヌクレオソームデオキシリボ核酸アデノシン三リン酸アデニンウラシルウリジン三リン酸グアノシン三リン酸シチジン三リン酸シトシンタンパク質翻訳 (生物学)自由エネルギー

塩基対

塩基対(えんきつい、base pair、bp)とは、デオキシリボ核酸の2本のポリヌクレオチド分子が、アデニン (A) とチミン (T)(もしくはウラシル (U))、グアニン (G) とシトシン (C) という決まった組を作り、水素結合で繋がったもの。この組み合わせはジェームズ・ワトソンとフランシス・クリックが発見したもので、「ワトソン・クリック型塩基対」「天然型塩基対」と言う。DNA や RNA の場合、ワトソン・クリック型塩基対が形成しさらに隣り合う塩基対の間に疎水性相互作用がはたらくことが、二重らせん構造が安定化する駆動力となっている。 これに対して、DNAが三重鎖を作るときなどには「フーグスティーン型塩基対」という別のパターンの塩基対も現れる。テロメア配列が持つ四重鎖構造、G-カルテットもフーグスティーン型の構造をとっている。さらに人工的に合成したATGC以外の塩基を使って、特別な塩基対を作り出すことも可能である。 インターカレーションとは、平面状の部位を持つ有機分子(インターカレーター)が、2個の塩基対の間にその平面部位を挿入する現象を指す。臭化エチジウムはインターカレーターの代表例である。.

塩基対と核酸 · 塩基対と転写 (生物学) · 続きを見る »

二次構造

二次構造(にじこうぞう、Secondary structure)は、タンパク質や核酸といった生体高分子の主鎖の部分的な立体構造のことである。本項ではタンパク質の二次構造を扱う。 タンパク質の二次構造は、タンパク質の「局所区分」の3次元構造である。最も一般的な2種類の二次構造要素はαヘリックスとβシートであるが、βターンやも見られる。二次構造要素は通常、タンパク質が三次構造へと折り畳まれる前の中間状態として自発的に形成される。 二次構造はペプチド中のアミド水素原子とカルボニル酸素原子との間の水素結合のパターンによって形式的に定義される。二次構造は別法として、正しい水素結合を持っているかどうかにかかわらず、の特定の領域における主鎖の二面角の規則的なパターンに基づいて定義することもできる。 二次構造の概念は1952年にスタンフォード大学のによって初めて発表された。核酸といったその他の生体高分子も特徴的なを有する。.

二次構造と核酸 · 二次構造と転写 (生物学) · 続きを見る »

チミン

チミン (thymine) はデオキシリボ核酸 (DNA) を構成する塩基の1つで、ピリミジンの誘導体。5-メチルウラシルとも呼ばれるように、ウラシルの5位の炭素をメチル化した構造を持つ。英発音に従ってサイミンともいう。DNA中にのみ見られ、リボ核酸 (RNA) ではほとんどの場合ウラシルに置き換わっている。2本の水素結合を介してアデニンと結合する。 DNA はアデニン (A)、グアニン (G)、シトシン (C)、チミン (T) の4種で構成されている。アデニン、グアニン、シトシンは RNAの核酸塩基にも同じ構造が見られるが、RNAではチミン (T) がウラシルに置き換わっている。チミンとウラシルは共にピリミジン環を持つ非常に似た塩基である。 シトシンが化学分解されるとウラシルが生成してしまうため、DNAではウラシルの代わりにチミンが用いられるようになった。これによりシトシンの分解により誤って生成してしまったウラシルを検出し、修復することが可能になるなどの利点が生じた。DNAは配列を保存することが何より重要であるため、DNAにチミンが用いられることは理に適っていると言える。一方、RNAにおいては配列の正確性がそれほど重要ではないため、ウラシルが用いられていると考えられる。 チミンの生合成については、デオキシウリジン一リン酸と5,10-メチレンテトラヒドロ葉酸は、チミジル酸シンターゼ (FAD)によりメチル化されたチミジル酸(dTMP)とテトラヒドロ葉酸を生成する。 (反応式) 5,10-メチレンテトラヒドロ葉酸 + デオキシウリジン一リン酸(dUMP) + FADH2 \rightleftharpoons チミジル酸(dTMP) + テトラヒドロ葉酸 + FAD なお、DNAの合成は、dUMP(デオキシウリジン一リン酸)-dTMP(チミジル酸)-dTDP(チミジン二リン酸)-dTTP(チミジン三リン酸)と進み、リン酸2分子分のピロリン酸が遊離して、チミジル酸に相当する部分がDNA鎖のデオキシリボースの3'位に結合することで、アデニン、グアニン、シトシン、チミンと4種類あるDNA塩基のうちのチミンが完成する。 DNAの変異として一般的なものに、隣接した2個のチミンあるいはシトシンが紫外線によって二量体となり、機能障害を引き起こす「キンク」と呼ばれる部分を形成する現象がある。.

チミンと核酸 · チミンと転写 (生物学) · 続きを見る »

リボソーム

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) '''リボソーム'''、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 リボソームまたはリボゾーム(; ライボソーム)は、あらゆる生物の細胞内に存在する構造であり、粗面小胞体 (rER) に付着している膜結合リボソームと細胞質中に存在する遊離リボソームがある。mRNAの遺伝情報を読み取ってタンパク質へと変換する機構である翻訳が行われる場である。大小2つのサブユニットから成り、これらはタンパク質(リボソームタンパク、ribosomal protein)とRNA(リボソームRNA、rRNA; ribosomal RNA)の複合体である。細胞小器官に分類される場合もある。2000年、X線構造解析により立体構造が決定された。.

リボソームと核酸 · リボソームと転写 (生物学) · 続きを見る »

リボ核酸

リボ核酸(リボかくさん、ribonucleic acid, RNA)は、リボヌクレオチドがホスホジエステル結合でつながった核酸である。RNAと略されることが多い。RNAのヌクレオチドはリボース、リン酸、塩基から構成される。基本的に核酸塩基としてアデニン (A)、グアニン (G)、シトシン (C)、ウラシル (U) を有する。RNAポリメラーゼによりDNAを鋳型にして転写(合成)される。各塩基はDNAのそれと対応しているが、ウラシルはチミンに対応する。RNAは生体内でタンパク質合成を行う際に必要なリボソームの活性中心部位を構成している。 生体内での挙動や構造により、伝令RNA(メッセンジャーRNA、mRNA)、運搬RNA(トランスファーRNA、tRNA)、リボソームRNA (rRNA)、ノンコーディングRNA (ncRNA)、リボザイム、二重鎖RNA (dsRNA) などさまざまな分類がなされる。.

リボ核酸と核酸 · リボ核酸と転写 (生物学) · 続きを見る »

ヌクレオチド

ヌクレオチド (nucleotide) とは、ヌクレオシドにリン酸基が結合した物質である。語源は“nucleo(核の)tide(結ばれた)”と言う意味である。英語では「ニュークリオタイド」と発音する。ヌクレオシドは五単糖の1位にプリン塩基またはピリミジン塩基がグリコシド結合したもの。DNAやRNAを構成する単位でもある。 ヌクレオチドが鎖のように連なりポリヌクレオチドになる。またアデノシン三リン酸はリン酸供与体としても機能し、加えてセカンドメッセンジャーの機能を持つcAMPなども知られる。遺伝暗号のコドンでは、ヌクレオチド3個でアミノ酸一つをコードしている。.

ヌクレオチドと核酸 · ヌクレオチドと転写 (生物学) · 続きを見る »

ヌクレオソーム

H4のコアヒストンからなるヌクレオソームコアの粒子の結晶構造とDNA。らせん軸の上部方向から見たもの。 ヌクレオソーム(ぬくれおそーむ;nucleosome)は、すべての真核生物に共通するクロマチンの基本的構成単位である。 ヌクレオソームは、4種のコアヒストン(H2A、H2B、H3、H4)から構成されるヒストン8量体に146 bpの2重鎖DNAが巻き付いた構造をとる。2つのヌクレオソームをつなぐ部分のDNAはリンカーDNAと呼ばれる。この構造を電子顕微鏡で観察すると、DNA鎖上にビーズが並んでいるように見える。 アダ・オリンズ、ドナルド・オリンズ夫妻、ロジャー・コーンバーグらによって1974年に提唱されたヌクレオソーム説は、その後の遺伝子発現研究の基盤をつくった。古細菌もヒストン様のタンパク質をもち、ヌクレオソーム様の構造が観察されているが、その解析は進んでいない。.

ヌクレオソームと核酸 · ヌクレオソームと転写 (生物学) · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

デオキシリボ核酸と核酸 · デオキシリボ核酸と転写 (生物学) · 続きを見る »

アデノシン三リン酸

アデノシン三リン酸(アデノシンさんリンさん、adenosine triphosphate)とは、アデノシンのリボース(=糖)に3分子のリン酸が付き、2個の高エネルギーリン酸結合を持つヌクレオチドのこと。IUPAC名としては「アデノシン 5'-三リン酸」。一般的には、「adenosine triphosphate」の下線部のアルファベットをとり、短縮形で「ATP(エー・ティー・ピー)」と呼ばれている。.

アデノシン三リン酸と核酸 · アデノシン三リン酸と転写 (生物学) · 続きを見る »

アデニン

アデニン (adenine) は核酸を構成する5種類の主な塩基のうちのひとつで、生体内に広く分布する有機化合物である。 プリン骨格は糖ともアミノ酸とも異なる独特の形状をしているにもかかわらず、アデニン、グアニンの他、コーヒーや茶に含まれるカフェイン、ココアに含まれるテオブロミン、緑茶に含まれるテオフィリンなどを構成し、また最近ではプリン体をカットしたビールなども販売されるほどありふれた有機物である。アデニンはシアン化水素とアンモニアを混合して加熱するだけで合成されるため、原始の地球でもありふれた有機物であったと考えられる。.

アデニンと核酸 · アデニンと転写 (生物学) · 続きを見る »

ウラシル

ウラシル (uracil) はリボ核酸を構成している 4種類の主な塩基のうちのひとつ。ピリミジン塩基である。IUPAC名はピリミジン-2,4(1H,3H)-ジオン (pyrimidin-2,4(1H,3H)-dione)。分子量は 112.09、CAS登録番号は 。右図の構造のほか、互変異体として、ヒドロキシピリミジノン構造、2,4-ジヒドロキシピリミジン構造をとることができる。 ウラシルから誘導されるヌクレオシドはウリジンである。二本鎖リボ核酸ではアデニンと2つの水素結合を介して塩基対を形成している。塩基配列では U と略記される。 核酸を構成する 5種類の主な塩基(ウラシル、アデニン、グアニン、シトシン、チミン)のうち、ウラシルはリボ核酸 (RNA) 中に主に存在し、デオキシリボ核酸 (DNA) にはほとんど存在しない。DNA 中ではウラシルの代わりに、5位にメチル基が置換したチミンが存在している。 ウラシルの 5位にフッ素が導入されたフルオロウラシル (5-FU) は抗がん剤として使われている。.

ウラシルと核酸 · ウラシルと転写 (生物学) · 続きを見る »

ウリジン三リン酸

ウリジン三リン酸(ウリジンさんリンさん、Uridine triphosphate、略号UTP)は 糖であるリボースの1'位で核酸塩基のウラシルと連結し、糖の5' 位に三リン酸のエステル化された構造の ピリミジン ヌクレオチドである。ウリジン三リン酸のおもな役割は、転写のRNA合成の基質である。 他にはUTPには、ATPのように代謝反応の基質となることでエネルギー源や活性化因子となるの役割があるが、ATPの場合より特異性が高い。 UTPが活性化因子となる場合は、通常、基質はUDP化されて、無機リン酸が遊離する。 UDPグルコースはグリコーゲン合成の出発点である。UTPはガラクトース代謝にも利用され、UTPガラクトースがUTPグルコースに変換される。ウリジン二リン酸グルクロン酸はビリルビンの抱合にも利用され、水溶性の高い、ジグルクロン酸ビリルビンを生成する。.

ウリジン三リン酸と核酸 · ウリジン三リン酸と転写 (生物学) · 続きを見る »

グアノシン三リン酸

アノシン三リン酸(グアノシンさんリンさん、guanosine triphosphate)は生物体内に存在するヌクレオチドである。正式名はグアノシン-5'-三リン酸、普通は略称 GTP で呼ばれる。分子量 523.18。 グアノシン二リン酸 (GDP) からアデノシン三リン酸 (ATP) のリン酸を受容して生合成される。類似した構造を持つ ATP が生物体内で高エネルギーリン酸結合のエネルギーを利用して、様々な生合成や輸送、運動などの反応に用いられるのに対し、GTP は主として細胞内シグナル伝達やタンパク質の機能の調節に用いられる。.

グアノシン三リン酸と核酸 · グアノシン三リン酸と転写 (生物学) · 続きを見る »

シチジン三リン酸

チジン三リン酸(シチジンさんりんさん、Cytidine triphosphate)は、ピリミジンヌクレオチド の一つである。CTPはRNA合成の基質の一つでもある。 通常は5'位に三リン酸を持つシチジン‐5'‐三リン酸を指す。生合成的には酵素によりUTPがアミノ化されて産生される。 CTPは ATP,と同様に高エネルギー結合を持つがATPのような生体での際立った役割は持たない。CTPはエネルギー源として使用され、レシチンやホスファチジルエタノールアミンなとグリセロリン脂質合成やたんぱく質のグリコシル化などの代謝反応に際して担体や活性体として働いている。また,ホスホコリンやホスホエタノールアミンは酵素的にシチジン三リン酸と反応して、シチジン二リン酸コリン(CDP-choline)やシチジン二リン酸エタノールアミンを生成する。.

シチジン三リン酸と核酸 · シチジン三リン酸と転写 (生物学) · 続きを見る »

シトシン

トシン (cytosine) は核酸を構成する5種類の主な塩基のうちのひとつで、ピリミジン塩基である。分子量は 111.10。右図の構造に対応するIUPAC名は 4-アミノピリミジン-2(1H)-オン (4-aminopyrimidin-2(1H)-one) であるが、ほかに互変異性として、3H体と、4-アミノピリミジン-2-オールをとることができる。 シトシンから誘導されるヌクレオシドはシチジンである。DNA、あるいはRNAの二重鎖構造の中ではグアニンと3本の水素結合を介して塩基対を作る。.

シトシンと核酸 · シトシンと転写 (生物学) · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

タンパク質と核酸 · タンパク質と転写 (生物学) · 続きを見る »

翻訳 (生物学)

分子生物学などにおいては、翻訳(ほんやく、Translation)とは、mRNAの情報に基づいて、タンパク質を合成する反応を指す。本来は細胞内での反応を指すが、細胞によらずに同様の反応を引き起こす系(無細胞翻訳系)も開発されている。.

核酸と翻訳 (生物学) · 翻訳 (生物学)と転写 (生物学) · 続きを見る »

自由エネルギー

自由エネルギー(じゆうエネルギー、)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となるChang『生命科学系のための物理化学』 pp.63-65アトキンス『物理化学(上)』 pp.120-125。 自由エネルギーは1882年にヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギー()と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギー()と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G.

核酸と自由エネルギー · 自由エネルギーと転写 (生物学) · 続きを見る »

上記のリストは以下の質問に答えます

核酸と転写 (生物学)の間の比較

転写 (生物学)が100を有している核酸は、83の関係を有しています。 彼らは一般的な18で持っているように、ジャカード指数は9.84%です = 18 / (83 + 100)。

参考文献

この記事では、核酸と転写 (生物学)との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »