ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

日と暦表時

ショートカット: 違い類似点ジャカード類似性係数参考文献

日と暦表時の違い

日 vs. 暦表時

日(にち、ひ、か)は. 暦表時(れきひょうじ、Ephemeris Time, ET)とは、地球から観測した太陽・月・惑星など天体の観測に基づく時刻系である。すなわち地球・惑星・月の公転運動に基準を置く、純理論的、純力学的な時刻系である。暦表時は暦表秒(回帰年のある整数分の1として定義された秒)に基づく時刻系で、現在は使われていない。なお地球の自転に基づいて決められる世界時(Universal Time、UT)とは異なるものである。 暦表秒は、1956年から1967年までSI秒の基準であったが、1984年に廃止された。1976年の国際天文学連合の決定により、地球表面での用途については暦表時(ET)は地球力学時(TDT)で置き換えられ、天体暦の計算用途には太陽系力学時(TDB)で置き換えられた。地球力学時(TDT)はその後地球時(TT)として再定義された。また、太陽系力学時(TDB)の定義では不足があったため、太陽系全体での用途については太陽系座標時(TCB)で、また地球近傍での用途には地心座標時(TCG)で再度置き換えられている。 地球時(TT)、地球力学時(TDT)、太陽系力学時(TDB)、太陽系座標時(TCB)、地心座標時(TCG)などの詳細については、時刻系#惑星運動の計算に用いられる時刻系を参照のこと。.

日と暦表時間の類似点

日と暦表時は(ユニオンペディアに)共通で13ものを持っています: 太陽太陽年世界時地球の自転公転国際単位系閏秒惑星時刻系時間1956年

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。.

太陽と日 · 太陽と暦表時 · 続きを見る »

太陽年

太陽年(たいようねん、)とは、太陽が黄道上の分点(春分・秋分)と至点(夏至・冬至)から出て再び各点に戻ってくるまでの周期のことであり、およそ365.242 189日である。回帰年(tropical year)ともいう。春分での回帰年は春分回帰年という。.

太陽年と日 · 太陽年と暦表時 · 続きを見る »

世界時

世界時(せかいじ、Universal Time、Temps Universel、Welt Zeit、略語:UT)とは、平均太陽時を世界で一意となる形に定義した時刻系である。地球の自転に基づく時刻系の一種である。 現在はUT1を指す(天測航法及び測量における暦の独立引数)、もしくは協定世界時(UTC)を指す(法令、通信、民生用など)。 世界時は、グリニッジ平均時 (Greenwich Mean Time, GMT)、すなわちイギリスのグリニッジを通る経度0度の子午線(本初子午線)上での平均太陽時を部分的に継承している。現在のような常用時(正子から計る)のグリニッジ平均時の導入時に、それを「世界時」と呼ぶことが始まった。.

世界時と日 · 世界時と暦表時 · 続きを見る »

地球の自転

地球の自転の様子 地球の自転(ちきゅうのじてん、Earth's rotation)とは、地球が自身の地軸の周りを回転すること(自転)である。 回転方向は東向きであり、地軸の北方向を正とすると右手回りである。北極星からは反時計回りに見える。 地球の自転は、国際地球回転・基準系事業(IERS)によって監視されている。.

地球の自転と日 · 地球の自転と暦表時 · 続きを見る »

公転

質量の差が'''大きい'''2つの天体の公転の様子。 質量の差が'''小さい'''2つの天体の公転の様子。 公転(こうてん、revolution)とは、ある物体が別の物体を中心にした円又は楕円の軌道に沿って回る運動の呼び名である。 地球は太陽を中心に公転している。太陽と地球の質量比は約330000:1なので図の上の場合に当たる(ただし実際の太陽系では、最も重力が大きい木星の影響を太陽系の惑星が受けている)。.

公転と日 · 公転と暦表時 · 続きを見る »

国際単位系

国際単位系(こくさいたんいけい、Système International d'unités、International System of Units、略称:SI)とは、メートル法の後継として国際的に定めた単位系である。略称の SI はフランス語に由来するが、これはメートル法がフランスの発案によるという歴史的経緯による。SI は国際単位系の略称であるため「SI 単位系」というのは誤り。(「SI 単位」は国際単位系の単位という意味で正しい。) なお以下の記述や表(番号を含む。)などは国際単位系の国際文書第 8 版日本語版による。 国際単位系 (SI) は、メートル条約に基づきメートル法のなかで広く使用されていたMKS単位系(長さの単位にメートル m、質量の単位にキログラム kg、時間の単位に秒 s を用い、この 3 つの単位の組み合わせでいろいろな量の単位を表現していたもの)を拡張したもので、1954年の第10回国際度量衡総会 (CGPM) で採択された。 現在では、世界のほとんどの国で合法的に使用でき、多くの国で使用することが義務づけられている。しかしアメリカなど一部の国では、それまで使用していた単位系の単位を使用することも認められている。 日本は、1885年(明治18年)にメートル条約に加入、1891年(明治24年)施行の度量衡法で尺貫法と併用することになり、1951年(昭和26年)施行の計量法で一部の例外を除きメートル法の使用が義務付けられた。 1991年(平成3年)には日本工業規格 (JIS) が完全に国際単位系準拠となり、JIS Z 8203「国際単位系 (SI) 及びその使い方」が規定された。 なお、国際単位系 (SI) はメートル法が発展したものであるが、メートル法系の単位系の亜流として「工学単位系(重力単位系)」「CGS単位系」などがあり、これらを区別する必要がある。 SI単位と非SI単位の分類.

国際単位系と日 · 国際単位系と暦表時 · 続きを見る »

(びょう、記号 s)は、国際単位系 (SI) 及びMKS単位系、CGS単位系における時間の物理単位である。他の量とは関係せず完全に独立して与えられる7つのSI基本単位の一つである。秒の単位記号は、「s」であり、「sec」などとしてはならない(後述)。 「秒」は、歴史的には地球の自転の周期の長さ、すなわち「一日の長さ」(LOD)を基に定義されていた。すなわち、LODを24分割した太陽時を60分割して「分」、さらにこれを60分割して「秒」が決められ、結果としてLODの86 400分の1が「秒」と定義されてきた。しかしながら、19世紀から20世紀にかけての天文学的観測から、LODには10−8程度の変動があることが判明し和田 (2002)、第2章 長さ、時間、質量の単位の歴史、pp. 34–35、3.時間の単位:地球から原子へ、時間の定義にはそぐわないと判断された。そのため、地球の公転周期に基づく定義を経て、1967年に、原子核が持つ普遍的な現象を利用したセシウム原子時計が秒の定義として採用された。 なお、1秒が人間の標準的な心臓拍動の間隔に近いことから誤解されることがあるが偶然に過ぎず、この両者には関係はない。.

日と秒 · 暦表時と秒 · 続きを見る »

閏秒

追加する場合は、通常は存在しない23時59分60秒(協定世界時での時刻)を追加し調整する 閏秒(うるうびょう、)は、現行の協定世界時 (UTC) において、世界時のUT1との差を調整するために追加もしくは削除される秒である 。この現行方式のUTCは1972年に始まった。2015年までに実施された計26回の閏秒は、いずれも1秒追加による調整であった。 27回目の閏秒の挿入は、2017年1月1日午前9時直前(日本標準時)に行われた。.

日と閏秒 · 暦表時と閏秒 · 続きを見る »

月(つき、Mond、Lune、Moon、Luna ルーナ)は、地球の唯一の衛星(惑星の周りを回る天体)である。太陽系の衛星中で5番目に大きい。地球から見て太陽に次いで明るい。 古くは太陽に対して太陰とも、また日輪(.

日と月 · 暦表時と月 · 続きを見る »

惑星

惑星(わくせい、πλανήτης、planeta、planet)とは、恒星の周りを回る天体のうち、比較的低質量のものをいう。正確には、褐色矮星の理論的下限質量(木星質量の十数倍程度)よりも質量の低いものを指す。ただし太陽の周りを回る天体については、これに加えて後述の定義を満たすものだけが惑星である。英語 planet の語源はギリシア語のプラネテス(さまよう者、放浪者などの意。IPA: /planítis/ )。 宇宙のスケールから見れば惑星が全体に影響を与える事はほとんど無く、宇宙形成論からすれば考慮の必要はほとんど無い。だが、天体の中では非常に多種多様で複雑なものである。そのため、天文学だけでなく地質学・化学・生物学などの学問分野では重要な対象となっている別冊日経サイエンス167、p.106-117、系外惑星が語る惑星系の起源、Douglas N. C.Lin。.

惑星と日 · 惑星と暦表時 · 続きを見る »

時刻系

時刻系(じこくけい)とは時間が経過する歩度、もしくは時刻、またはその両方の基準である。例えば、常用時の基準は時間間隔とその日の時刻の両方を規定する。 歴史的には、時刻系は地球の自転周期に基づいていた。しかし地球が自転する速度は一定ではない。そこで地球自転に基づく基準は最初、地球の公転周期を用いた基準に置き換えられた。しかし地球の軌道は楕円であり、太陽に近い位置では地球の公転は速くなり公転速度も結局は一定ではない。比較的最近になると、時間間隔の基準は地球の自転や公転の速度に基づく過去の基準に代わって非常に正確で安定している原子時計に基づく基準に置き換えられている。 国際単位系(SI)において時間の基準とされている時間間隔は秒である。他の時間間隔(分、時間、日、ユリウス年、ユリウス世紀など)は通常、秒を用いて定義されている。.

日と時刻系 · 時刻系と暦表時 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

日と時間 · 時間と暦表時 · 続きを見る »

1956年

記載なし。

1956年と日 · 1956年と暦表時 · 続きを見る »

上記のリストは以下の質問に答えます

日と暦表時の間の比較

暦表時が33を有している日は、72の関係を有しています。 彼らは一般的な13で持っているように、ジャカード指数は12.38%です = 13 / (72 + 33)。

参考文献

この記事では、日と暦表時との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »