ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

整数と除法の原理

ショートカット: 違い類似点ジャカード類似性係数参考文献

整数と除法の原理の違い

整数 vs. 除法の原理

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。. 数学の特に算術において、自然数や整数に対する通常の剰余付き除法(じょうよつきじょほう、division with remainder; 余りのある割り算)は、ユークリッド除法(ユークリッドじょほう、Euclidean division)または整除法(せいじょほう、entire division)とも呼ばれ、「被除数と除数と呼ばれる二つの自然数に対して、商と剰余と呼ばれる二つの自然数が、与えられた性質を満たして一意的に存在する」ことを主張する定理として明確に規定することができる。このような定理を「除法の原理」(じょほうのげんり、division algorithm; 除法の算法)という。即ち、その主張は「二つの自然数 n および m ≠ 0 に対してある自然数 a および b が存在して n.

整数と除法の原理間の類似点

整数と除法の原理は(ユニオンペディアに)共通で8ものを持っています: 同値関係ユークリッドの互除法ユークリッド環ガウス整数自然数抽象代数学数学整域

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

同値関係と整数 · 同値関係と除法の原理 · 続きを見る »

ユークリッドの互除法

ユークリッドの互除法(ユークリッドのごじょほう、)は、2 つの自然数の最大公約数を求める手法の一つである。 2 つの自然数 a, b (a ≧ b) について、a の b による剰余を r とすると、 a と b との最大公約数は b と r との最大公約数に等しいという性質が成り立つ。この性質を利用して、 b を r で割った剰余、 除数 r をその剰余で割った剰余、と剰余を求める計算を逐次繰り返すと、剰余が 0 になった時の除数が a と b との最大公約数となる。 明示的に記述された最古のアルゴリズムとしても知られ、紀元前300年頃に記されたユークリッドの『原論』第 7 巻、命題 1 から 3 がそれである。.

ユークリッドの互除法と整数 · ユークリッドの互除法と除法の原理 · 続きを見る »

ユークリッド環

数学の特に抽象代数学および環論におけるユークリッド整域(ユークリッドせいいき、Euclidean domain)あるいはユークリッド環(ユークリッドかん、Euclidean ring)とは、「ユークリッド写像(次数写像)」とも呼ばれるある種の構造を備えた環で、そこではユークリッドの互除法を適当に一般化したものが行える。この一般化された互除法は整数に対するもともとの互除法アルゴリズムとほとんど同じ形で行うことができ、任意のユークリッド環において二元の最大公約数を求めるのに適用できる。特に、任意の二元に対してそれらの最大公約数は存在し、それら二元の線型結合として書き表される(ベズーの等式)。また、ユークリッド環の任意のイデアルは主イデアル(つまり、単項生成)であり、したがって算術の基本定理の適当な一般化が成立する。すなわち、任意のユークリッド環は一意分解環である。 ユークリッド環のクラスをより大きな主イデアル環 (PID) のクラスと比較することには大いに意味がある。勝手な PID はユークリッド環(あるいは実際には有理整数環を考えるので十分だが)と多くの「構造的性質」を共有しているが、しかしユークリッド環には明示的に与えられるユークリッド写像から得られる具体性があるのでアルゴリズム的な応用に有用である。特に、有理整数環や体上一変数の任意の多項式環が容易に計算可能なユークリッド写像を持つユークリッド環となることは、計算代数において基本的に重要な事実である。 そういったことから、整域 が与えられたとき、 がユークリッド写像を持つことがわかるとしばしば非常に便利なのである。特に、そのとき が PID であることが分かるが、しかし一般にはユークリッド写像の存在が「明らか」でないときに が PID かどうかを決定する問題は、それがユークリッド環であるかどうかの決定よりも容易である。.

ユークリッド環と整数 · ユークリッド環と除法の原理 · 続きを見る »

ガウス整数

ウス整数とは、ガウス平面では格子点に当たる。 ガウス整数(ガウスせいすう、Gaussian integer)とは、実部と虚部が共に整数である複素数のことである。すなわち、(, は整数)の形の数のことである。ここで は虚数単位を表す。ガウス整数という名称は、カール・フリードリヒ・ガウスが導入したことに因む。ガウス自身はガウス整数のことを複素整数(Komplexe Ganze Zahl)と呼んだが、今日ではこの呼称は一般的ではない。 通常の整数は、 の場合なので、ガウス整数の一種である。区別のために、通常の整数は有理整数と呼ばれることもある。 数学的には一つ一つのガウス整数を考えるよりも、集合として全体の構造を考える方が自然である。ガウス整数全体の集合を と表し、これをガウス整数環と呼ぶ。すなわち、 である( は有理整数環、すなわち有理整数全体の集合を表す)。その名が示すように、ガウス整数環は加法と乗法について閉じており、環としての構造を持つ。複素数体 C の部分環であるから、整域でもある。 を有理数体、すなわち有理数全体の集合とするとき、 をガウス数体という。ガウス整数環はガウス数体の整数環である。ガウス数体は、典型的な代数体であるところの円分体や二次体の一種であるので、ガウス整数環は代数的整数論における最も基本的な対象の一つである。.

ガウス整数と整数 · ガウス整数と除法の原理 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

整数と自然数 · 自然数と除法の原理 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

抽象代数学と整数 · 抽象代数学と除法の原理 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

数学と整数 · 数学と除法の原理 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

整域と整数 · 整域と除法の原理 · 続きを見る »

上記のリストは以下の質問に答えます

整数と除法の原理の間の比較

除法の原理が35を有している整数は、71の関係を有しています。 彼らは一般的な8で持っているように、ジャカード指数は7.55%です = 8 / (71 + 35)。

参考文献

この記事では、整数と除法の原理との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »