ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

撮影と被写界深度

ショートカット: 違い類似点ジャカード類似性係数参考文献

撮影と被写界深度の違い

撮影 vs. 被写界深度

撮影(さつえい)とはカメラ(撮影機)によって静止画(スチル写真)や動画(映画、テレビ、ビデオ等)を記録する行為のこと。メディアは元々はフィルムであったが、最近はデジタル技術の進歩に伴い、ディスクやスティック、テープ、カードなどの媒体が使われる。 撮像ともいい、特に天体の像を記録する場合に使う(「撮像観測」などと使われる)。. 被写界深度が深い写真 焦点距離18mm(APS-C) 絞り F22 被写界深度が浅い写真 焦点距離50ミリ(APS-C) 絞り F1.4 接写リング使用 被写界深度(ひしゃかいしんど)とは、写真の焦点が合っているように見える被写体側の距離の範囲のこと。写真用レンズにおいては、ある一つの設定で厳密な意味でピントが合っている場所は、一つの平面上にしかないが、一定の許容量を認めることでその前後にも十分にはっきりと像を結んでいるといえる範囲がある。その範囲のことを被写界深度と呼んでいる。 右の二つの写真を比較してみた場合、上の写真では近くのバラにも遠くの洋館にも焦点が合っているように見え、焦点が合っている範囲が手前から奥へと広い。このような状態を「被写界深度が深い」または「パンフォーカス」という。 一方、下の写真では花の「シベ」の部分にしか焦点が合っておらず、花びらでさえ奥側と手前側はぼけている。焦点が合っている範囲が狭いのである。このような状態を「被写界深度が浅い」という。 同じ内容を指して被写体深度と言う表記が用いられることがあるが、これは誤用である。また、焦点深度は別の概念で、結像面(例えばフィルム面)側における範囲のことである。 被写界深度は英語でDepth of fieldといい、略称はDOFである。.

撮影と被写界深度間の類似点

撮影と被写界深度は(ユニオンペディアに)共通で12ものを持っています: 広角レンズボケ (写真)パンフォーカスシャッター速度写真写真レンズ写真フィルム絞り (光学)焦点距離F値望遠レンズ撮像素子

広角レンズ

広角レンズ(こうかくレンズ、wide lens, wide angle lens)とは、写真レンズの分類の1つである。「広角レンズ」を定義する厳密な基準はなく、標準レンズよりも「画角の広いレンズ」・「焦点距離が短いレンズ」という分類である。歴史的理由から35mmフィルムカメラで「標準」とされてきた50mmが望遠寄りであるためもあって、標準寄りの広角と、より広角側の広角、といった分類がされることもある。.

広角レンズと撮影 · 広角レンズと被写界深度 · 続きを見る »

ボケ (写真)

写真におけるボケ(ぼけ、英: bokeh)とは、レンズの焦点(被写界深度)の範囲外に生みだされるボヤけた領域の美しさ、およびそれを意図的に利用する表現手法である。基本的に主たる被写体にはピントが合っていることが前提であり、ソフトフォーカスレンズの効果や、撮影の失敗により画像に焦点が合っていない「ピンボケ写真」とはまったく異なる概念である。この概念や手法は日本国外でもbokehと呼ばれている。 これとは対照に、画面のすべてにピントの合わせることをパンフォーカスやディープフォーカスという。 技術的には、意図的に被写界深度が浅くなるように設定することでそのような映像を撮ることができ、映画撮影での同様な表現は「シャロー・フォーカス」(shallow focus) と呼ばれる。.

ボケ (写真)と撮影 · ボケ (写真)と被写界深度 · 続きを見る »

パンフォーカス

パンフォーカスの写真。焦点距離18ミリ(APS-Cサイズデジタル)、絞りF22。パンフォーカスでない写真。焦点距離21ミリ(APS-Cサイズデジタル)、絞りF2.8 パンフォーカスあるいはディープフォーカスとは、写真または映画の撮影において、被写界深度を深くする事によって、近くのものから遠くのものまでピントが合っているように見せる方法、またはその方法により撮影された写真・映画のこと。絞りを適切に絞ったうえで、焦点を無限遠よりも手前に調整することによって実現される。「パンフォーカス」は和製英語であり、英語では「ディープフォーカス」などと言う。.

パンフォーカスと撮影 · パンフォーカスと被写界深度 · 続きを見る »

シャッター速度

ャッター速度(Shutter speed )は、カメラによる写真撮影の際、シャッターが開放され、フィルムまたは撮像素子がレンズを通した光にさらされる(露出する)時間(露光時間、シャッタースピード、「SS」とも略される)をいう。この時間が短いほどシャッター速度が速い、長いほどシャッター速度が遅いという。(正確にはスピードという表現はふさわしくない。注釈参照) シャッター速度はISO感度、絞りと並んで露出を決定する三大要素の一つである。またシャッター速度が遅いと手ぶれや被写体ぶれを引き起こす。シャッター速度は、また、それを適切に調節することにより多様な写真表現を可能にできる。.

シャッター速度と撮影 · シャッター速度と被写界深度 · 続きを見る »

写真

写真(しゃしん、古くは寫眞)とは、.

写真と撮影 · 写真と被写界深度 · 続きを見る »

写真レンズ

写真レンズ(単焦点レンズ):焦点距離50mm、F値1.8 レンズ側の絞り制御機構の様子(キヤノンFDマウント) カメラ側の絞り制御機構の様子(キヤノンFDマウント) 写真レンズ(しゃしんレンズ)とは、写真撮影用・写真機(カメラ)用のレンズで、写真用レンズともいう。写真撮影カメラの主要な構成要素のひとつであり、レンズ交換式カメラでは独立したモジュールとして、「レンズマウント」にネジ込み構造やバヨネット構造など他にスピゴット構造などがある。で取り付けられる。レンズ交換式でないカメラでは内蔵ないし通常は取り外されない構造のモジュールとなっている。.

写真レンズと撮影 · 写真レンズと被写界深度 · 続きを見る »

写真フィルム

35mmスチールカメラ用のパトローネ入りフィルムの例 写真フィルム(しゃしんフィルム)とは写真(映画も含む)において、カメラから得られた光の情報を記録する感光材料であり、現像されることにより記録媒体となるフィルムのこと。透明な薄い膜状のベース(支持体)に感光剤(主として銀化合物.

写真フィルムと撮影 · 写真フィルムと被写界深度 · 続きを見る »

絞り (光学)

虹彩絞り 光学系において絞り(しぼり、diaphragm)とは、通過する光の量を調整するために用いる遮蔽物のことである。開口部を指す aperture が訳語になることもある。.

撮影と絞り (光学) · 絞り (光学)と被写界深度 · 続きを見る »

焦点距離

点距離(しょうてんきょり、英:focal length)は、光学系の主点から焦点までの距離である。 光学系に対して光軸に平行な光線が入射する場合を考える。光学系を出た後の光線を逆向きに延長した直線を引き、それが光学系に入る前の光線と交わる点から光軸上に下ろした垂線の足が主点であり、そこから焦点までの距離が焦点距離である。.

撮影と焦点距離 · 焦点距離と被写界深度 · 続きを見る »

F値

絞りとF値の模式図。絞り1段ごとに光を集める面積は半分になり、F値は1.4倍となっている。 F値 (エフち、F-number)とは、レンズの焦点距離を有効口径で割った値であり、レンズの明るさを示す指標として用いられる。F値が小さいほどレンズは明るく(.

F値と撮影 · F値と被写界深度 · 続きを見る »

望遠レンズ

望遠レンズ(35mm判)キヤノンEF300mmF4L IS USM 望遠レンズ(ぼうえんレンズ)は、写真レンズの分類の1つである。スペックの点から見た分類では「望遠レンズ」を定義する厳密な基準はなく、標準レンズよりも「画角の狭いレンズ」・「焦点距離が長いレンズ」ということになる。望遠鏡のように遠くを写すために、また近距離にある被写体を大きく写すために使われる。 レンズの構成から見た分類としては、2種類に分けられ、焦点距離に応じた全長をもついわゆる「長焦点型」と、一般の望遠鏡と同様の、全体として凸レンズの性質を持つ前群と、凹レンズの性質を持つ後群から成る、光学的な焦点距離が鏡筒より長いいわゆる「望遠型」(テレフォト型)がある。後者の逆の構成を逆望遠などと言う。L1 - Tele positive lens group L2 - Tele negative lens group D - Diaphragm -->.

撮影と望遠レンズ · 望遠レンズと被写界深度 · 続きを見る »

撮像素子

CCDイメージセンサの例 撮像素子(さつぞうそし)とは画像を電気信号に変換する素子である。可視光だけでなく、赤外線や紫外線、X線に感度のある撮像素子などもある。.

撮像素子と撮影 · 撮像素子と被写界深度 · 続きを見る »

上記のリストは以下の質問に答えます

撮影と被写界深度の間の比較

被写界深度が39を有している撮影は、64の関係を有しています。 彼らは一般的な12で持っているように、ジャカード指数は11.65%です = 12 / (64 + 39)。

参考文献

この記事では、撮影と被写界深度との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »