ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

指標表と点群

ショートカット: 違い類似点ジャカード類似性係数参考文献

指標表と点群の違い

指標表 vs. 点群

抽象代数学の一分野である群論において、指標表(しひょうひょう、character table)とは、与えられた群について、その全ての既約表現の指標を表にまとめたものである。これは直交関係などにより対象としている群についての比較的少ない情報から計算できて、群の性質をそこから引き出すことができる。 化学・結晶学・分光学において点群の指標表は、対称性の観点から分子振動を分類したり、2つの量子状態間の遷移が可能かどうかを考える場合に用いられる。. 数学における点群(てんぐん、point group)とはある図形の形を保ったまま行う移動操作のうち、少なくとも1つの不動点を持つものを元とする群のこと。 このような抽象的な群の概念を導入することによって、物理学や化学における結晶や分子対称性を数学的に記述することができる。そのような応用との関係からふつう3次元ユークリッド空間における変換の範疇で考えることが多い。.

指標表と点群間の類似点

指標表と点群は(ユニオンペディアに)共通で14ものを持っています: 大直交性定理対称操作化学マリケン記号トレース商群共役類元 (数学)群の表現群論行列の相似集合振動準位既約表現

大直交性定理

位数g (元の数)の群G の既約表現α のユニタリー表現行列D(α) の行列要素をD(α)ij(G)と書くと、その間には以下の直交関係がある。 ここで和記号はGのすべての元についての和を意味する。dαは表現行列の次元である。これを表現行列についての大直交性定理と呼ぶ。大直交性定理はシューアの補題から導かれる。.

大直交性定理と指標表 · 大直交性定理と点群 · 続きを見る »

対称操作

結晶学における対称操作とは、格子点を不変にする操作である。 対称操作には次のものがある。.

対称操作と指標表 · 対称操作と点群 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

化学と指標表 · 化学と点群 · 続きを見る »

マリケン記号

マリケン記号とは、点群の既約表現を表す記号のひとつである。分子などを扱う場合に便利なように工夫してある。.

マリケン記号と指標表 · マリケン記号と点群 · 続きを見る »

トレース

トレース (trace) は、すでにある物をなぞること。またはなぞるべき痕跡のこと。.

トレースと指標表 · トレースと点群 · 続きを見る »

商群

数学において,商群(しょうぐん,quotient group, factor group)あるいは剰余群,因子群とは,群構造を保つ同値関係を用いて,大きい群から似た元を集めて得られる群である.例えば,n を法とした加法の巡回群は,整数から,差が の倍数の元を同一視し,そのような各類(合同類と呼ばれる)に1つの実体として作用する群構造を定義することによって得られる.群論と呼ばれる数学の分野の一部である. 群の商において,単位元の同値類はつねにもとの群の正規部分群であり,他の同値類たちはちょうどその正規部分群の剰余類たちである.得られる商は と書かれる,ただし はもとの群で は正規部分群である.(これは「(ジーモッドエヌ)」と読まれる."mod" は modulo の略である.) 商群の重要性の多くはその準同型との関係に由来する.第一同型定理は任意の群 の準同型による像はつねに のある商と同型であると述べている.具体的には,準同型 による の像は と同型である,ただし は の核 を表す. 商群の双対概念は部分群であり,これらが大きい群から小さい群を作る2つの主要な方法である.任意の正規部分群 は,大きい群から部分群 の元の間の差異を除去して得られる,対応する商群を持つ.圏論では,商群は商対象の例であり,これは部分対象の双対である.商対象の他の例は,商環,商線型空間,商位相空間,商集合を参照..

商群と指標表 · 商群と点群 · 続きを見る »

共役類

数学、とくに群論において、任意の群は共役類(きょうやくるい、conjugacy class)に分割できる。同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする。.

共役類と指標表 · 共役類と点群 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

元 (数学)と指標表 · 元 (数学)と点群 · 続きを見る »

群の表現

数学において、群の表現(ぐんのひょうげん、group representation)とは、抽象的な群 の元 に対して具体的な線形空間 の正則な線形変換としての実現を与える準同型写像 のことである。線型空間 の基底を取ることにより、 をより具体的な正則行列として表すことができる。.

指標表と群の表現 · 点群と群の表現 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

指標表と群論 · 点群と群論 · 続きを見る »

行列の相似

線型代数学において、ふたつの n 次正方行列 A, B が相似(そうじ、similar)であるとは、n 次正則行列 P で となるようなものが存在するときに言う。互いに相似な行列は同じ線型写像を異なる基底に関して表現するもので、さきほどの P はそれらの基底の間の基底変換 (change of basis) を与える行列である。上記のような変換はしばしば、変換行列 P に関する相似変換 (similarity transformation) と呼ばれる。線型代数群の文脈では、行列の相似性は(群の元としての)共軛性として言及されることも多い。.

指標表と行列の相似 · 点群と行列の相似 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

指標表と集合 · 点群と集合 · 続きを見る »

振動準位

振動準位(しんどうじゅんい)は分子の重心の移動を伴わず、核の相対的な位置の変位にともなう運動を表す量子状態である。分子内において核は、結合する隣接核と結合エネルギーに相当するポテンシャルの井戸を形成し、お互いバネで結ばれた様な状態にあるために、上記のような運動は振動運動によって記述される(詳細は以下の章を参照)。振動準位間の遷移は振動遷移(しんどうせんい)と呼ばれ、主に赤外分光法またはラマン分光法によって観測される。.

指標表と振動準位 · 振動準位と点群 · 続きを見る »

既約表現

数学のとくに群あるいは多元環の表現論における(代数的構造の)既約表現(きやくひょうげん、irreducible representation; irrep) とは、真の閉部分表現を持たない非零表現を言う。 複素内積ベクトル空間 V 上の任意の有限次元ユニタリ表現は、既約表現の直和である。既約表現は常に直既約である(すなわち、別の表現の直和にかくことができない)であり、この二つはしばしば混同されるが、例えば上半三角冪零行列として作用する実数の二次元表現など、一般には可約だが直既約な表現が無数に存在する。.

指標表と既約表現 · 既約表現と点群 · 続きを見る »

上記のリストは以下の質問に答えます

指標表と点群の間の比較

点群が47を有している指標表は、50の関係を有しています。 彼らは一般的な14で持っているように、ジャカード指数は14.43%です = 14 / (50 + 47)。

参考文献

この記事では、指標表と点群との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »