ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

微分

索引 微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

110 関係: 垂直接線偏微分ほとんど (数学)単調写像可微分多様体双曲線関数同値多項式函数多重線型写像変化定義域定数定数関数実数実数値関数実数直線対称微分対数差分商不定積分三角関数一次関数弱微分作用素微分可能微分可能関数微分幾何学微分作用素微分積分学微分積分学の基本定理微分環微分法ミネソタ大学ツインシティー校ハーディ空間バナッハ空間ヤコビ行列ライプニッツの記法リプシッツ連続ワイエルシュトラス関数ヘヴィサイドの階段関数テイラー展開デルタディラック測度フレシェ微分フレシェ空間ニュートンの記法ベクトル場ベクトル値函数ベクトル空間初等関数...オーギュスタン=ルイ・コーシーカール・ワイエルシュトラスカーンアカデミーガトー微分グラフ (関数)シュワルツ超函数ジョゼフ=ルイ・ラグランジュストーン=ワイエルシュトラスの定理ステファン・バナフスカラー場ソボレフ空間傾き (数学)冪乗写像の微分凸関数全微分勾配 (ベクトル解析)瞬間積の微分法則積分法線型写像線型近似線型性絶対値無限小片側極限直線違いを除いて領域 (解析学)行列複素平面複素数解析関数超実数関数 (数学)関数の微分自動微分自然対数速度連続 (数学)連鎖律逆双曲線関数逆三角関数逆写像ΔWolfram Alpha接ベクトル接ベクトル空間接線接束極限正則関数滑らかな関数指数関数有限差分方向微分感度数学数式 インデックスを展開 (60 もっと) »

垂直接線

数学および微分積分学における垂直接線(すいちょくせっせん、)とは、垂直であるような接線のことを言う。垂線は傾きが無限大であるため、グラフに垂直接線があるような関数は、その接点において微分可能ではない。.

新しい!!: 微分と垂直接線 · 続きを見る »

偏微分

数学の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は)微分である(全微分では全ての変数を動かしたままにするのと対照的である)。偏微分はベクトル解析や微分幾何学などで用いられる。 函数 の変数 に関する偏微分は など様々な表し方がある。一般に函数の偏微分はもとの函数と同じ引数を持つ函数であり、このことを のように記法に明示的に含めてしまうこともある。偏微分記号 ∂ が数学において用いられた最初の例の一つは、1770年以降マルキ・ド・コンドルセによるものだが、それは偏差分の意味で用いられたものである。現代的な偏微分記法はアドリアン=マリ・ルジャンドル が導入しているが、後が続かなかった。これを1841年に再導入するのがカール・グスタフ・ヤコブ・ヤコビである。 偏微分は方向微分の特別の場合である。また無限次元の場合にこれらはガトー微分に一般化される。.

新しい!!: 微分と偏微分 · 続きを見る »

ほとんど (数学)

数学において、ほとんど (almost) という語は、ある厳密な意味で用いられる専門用語のひとつである。主に「測度 0 の集合を除いて」という意味であるが、それ単体で用いることはあまりなく、「ほとんど至るところで(almost everywhere)」「ほとんど全ての(almost all)」などの決まり文句でひとつの意味を形成する。.

新しい!!: 微分とほとんど (数学) · 続きを見る »

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: 微分と単調写像 · 続きを見る »

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: 微分と可微分多様体 · 続きを見る »

双曲線関数

csch) のグラフ 数学において、双曲線関数(そうきょくせんかんすう、hyperbolic function)とは、三角関数と類似の関数で、標準形の双曲線を媒介変数表示するときなどに現れる。.

新しい!!: 微分と双曲線関数 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 微分と同値 · 続きを見る »

多項式函数

代数学における多項式函数(たこうしきかんすう、polynomial function)は、適当な可換環(多くの場合は可換体) に係数を持つ多項式に付随して定まる f\colon x \mapsto a_n x^n + a_ x^ + \cdots + a_1 x + a_0 x^0 なる形の写像を言う。ただし、 は自然数で、 は の係数と呼ばれる の元である。これはまた、和の sum-記法によって のようにも書かれる。このような写像 を に係数を持つ多項式函数と呼ぶ。 ここでは定義を複雑にしないために多項式函数の定義域および終域 については特に限定しないが、事実として は 上の単位的結合多元環の構造を持てば十分である。つまりそのような構造は多項式函数の定義に現れるすべての演算を持っている.

新しい!!: 微分と多項式函数 · 続きを見る »

多重線型写像

線型代数学において、多重線型写像(たじゅうせんけいしゃぞう、multilinear map)は各変数ごとに線型な多変数の関数である。正確には、多重線型写像は、V_1,\ldots,V_n とW\! をベクトル空間(あるいは可換環上の加群)として、次の性質を満たす写像 である: 各 i\! に対して、v_i\! を除くすべての変数を定数のまま止めると、f(v_1,\ldots,v_n) は v_i\! の線型写像である。 一変数の多重線型写像は線型写像であり、二変数のそれは双線型写像である。より一般に、k 変数の多重線型写像は k 重線型写像 (k-linear map) と呼ばれる。多重線型写像の終域が係数体であれば、多重線型形式と呼ばれる。多重線型写像や多重線型形式は多重線型代数において研究の基本的な対象である。 すべての変数が同じ空間に属していれば、、反対称、 k 重線型写像を考えることができる。基礎環(あるいは体)の標数が 2 でなければ後ろ2つは一致し、標数が 2 であれば前2つは一致する。 f\colon V_1 \times \cdots \times V_n \to W\text を有限次元ベクトル空間の間の多重線型写像としよう。V_i\! の次元を d_i\!, W\! の次元を d\! とする。各 V_i\! に対して \ を、W\! に対して基底 \ を選べば(ベクトルにはボールドを用いた)、スカラー A_^k の集合を次によって定義できる: するとスカラー \ は多重線型写像 f\! を完全に決定する。とくに、1 \leq i \leq n\! に対して であれば、 -->f\colon R^2 \times R^2 \times R^2 \to R を考えよう。V_i.

新しい!!: 微分と多重線型写像 · 続きを見る »

変化

変化(へんか、へんげ).

新しい!!: 微分と変化 · 続きを見る »

定義域

数学における写像の定義域(ていぎいき、domain of definition)あるいは始域(しいき、domain; 域, 領域)とは、写像の値の定義される引数(「入力」)の取り得る値全体からなる集合である。つまり、写像はその定義域の各元に対して(「出力」としての)値を与える。 例えば、実数の範囲での議論において、余弦函数の定義域はふつう実数全体の成す集合(実数直線)であるし、正の平方根函数の定義域は 以上の実数全体の成す集合であるものとする。定義域が実数から成る集合(実数全体の成す集合の部分集合)であるような実数値函数は、その定義域が -軸上にあるものとして -直交座標系に表すことができる。.

新しい!!: 微分と定義域 · 続きを見る »

定数

数学における定数(ていすう、じょうすう、constant; 常数)あるいは定項 (constant term) は、二つの異なる意味を示し得る。そのひとつは固定 (fix) され、矛盾なく定義された数(またはもっとほかの数学的対象)であり、この意味で言う定数であることをはっきりさせるために「数学定数」(あるいは「物理定数」もそうだが)という語を用いることもある。もう一つの意味は、定数函数またはその(これらはふつうたがいに同一視される)を指し示すもので、この意味での「定数」は扱う問題における主変数に依存しない変数という形で表されるのが普通である。後者の意味での例として、は、与えられた函数の原始函数をすべて得るために特定の原始函数に加えられる、任意の(積分変数に依存しないという意味での)定数函数を言う。 例えば、一般の二次函数はふつう を定数(あるいはパラメタ)として のようにあらわされる。ここに変数 は考えている函数の引数のプレースホルダとなるものである。より明示的に のように書けば がこの函数の引数であることが明瞭で、しかも暗黙の裡に が定数であることを提示できる。この例では、定数 はこの多項式の係数と呼ばれる。 の項は を含まないからと呼ばれ(これを の係数と考えることができる)、多項式において次数が零の任意の項または式は定数である。.

新しい!!: 微分と定数 · 続きを見る »

定数関数

数学の分野における定数関数(ていすうかんすう、; 定値写像)とは、それがとりうる値が変数の変動によって変わらない定数値の関数(写像)のことを言う。例えば、関数 f(x).

新しい!!: 微分と定数関数 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 微分と実数 · 続きを見る »

実数値関数

実数値関数(じっすうちかんすう、real-valued function)、あるいは実関数(じつかんすう、real function)とは、値として実数を与える関数をいう。つまり、定義域のそれぞれの元に対し実数を割り当てる関数のことである。 多くの重要な関数空間が、いくつかの実数値関数からなるものとして定義されている。.

新しい!!: 微分と実数値関数 · 続きを見る »

実数直線

数学における実数直線(じっすうちょくせん、real line, real number line)は、その上の各点が実数であるような直線である。つまり、実数直線とは、すべての実数からなる集合 を、幾何学的な空間(具体的には一次元のユークリッド空間)とみなしたものということである。この空間はベクトル空間(またはアフィン空間)や距離空間、位相空間、測度空間あるいは線型連続体としてみることもできる。 単に実数全体の成す集合としての実数直線は記号 (あるいは黒板太字の &#x211d) で表されるのがふつうだが、それが一次元のユークリッド空間であることを強調する意味で と書かれることもある。 本項では の位相幾何学的、幾何学的あるいは実解析的な側面に焦点を当てる。もちろん実数の全体は一つの体として代数学でも重要な意味を持つが、その文脈での が直線として言及されるのは稀である。そういった観点を含めた の詳細は実数の項を参照のこと。.

新しい!!: 微分と実数直線 · 続きを見る »

対称微分

数学において、対称微分(たいしょうびぶん、symmetric derivative)とは通常の微分を一般化した演算であり、次のように定義されるThomson, p. 1。 極限をとらない形はしばしば対称差分商と呼ばれる。関数が点 x で対称微分可能であるとは、その点で対称微分が存在することである。 ある点で通常の意味で微分可能ならば対称微分可能であるが、その逆は必ずしも真ではない。よく知られた例として、絶対値関数 f(x).

新しい!!: 微分と対称微分 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: 微分と対数 · 続きを見る »

差分商

微分積分学における差分商(さぶんしょう、difference quotient; 差商)は、ふつうは函数 に対する有限差分の商 \frac を言い、これは の極限で微分商となる。実際に函数値の有限差分を対応する変数の有限差分で割ったものであることにより、この名称がある。 差分商は函数 のある区間(いまの場合、長さ の区間)における「平均変化率」(average rate of change) を与えるものであるから、特にその極限としての微分商は「瞬間変化率」に対応すると考えることができる やや記法を変更()して、区間 に対する、差分商 \frac を考えれば、これは の区間 における微分係数の「平均値」を表していると考えられる。このことは、可微分函数 に対して の微分係数が区間内の適当な点において平均値に到達することを述べた平均値の定理によって正当化される。幾何学的には、この差分商は二点 を通る割線の傾きを測るものである。 差分商はにおける近似に用いられるが、それは同時にこの応用において批判の主題ともなっている 差分商のことを、ニュートン商(アイザック・ニュートンに由来)やフェルマーの差分商(ピエール・ド・フェルマーに由来)などとも呼ぶことがある。 有限差分をとる操作を反復適用して得られる高階差分を用いれば、高階差分商あるいは(分点が等間隔の場合の)高階差商を考えることができる。.

新しい!!: 微分と差分商 · 続きを見る »

不定積分

関数の不定積分という用語には次に挙げる四種類の意味で用いられる場合がある。 (逆微分) 0) 微分の逆操作を意味する:すなわち、与えられた関数が連続関数であるとき、微分するとその関数に一致するような新たな関数(原始関数)を求める操作のこと、およびその原始関数の全体(集合)を 逆微分としての不定積分(antiderivative)と言う。 (積分論) 1) 一変数関数 に対して、定義域内の任意の閉区間 上の定積分が に一致する関数 を関数 の 不定積分 (indefinite integral) と言う。 (積分論) 2) 一変数関数の定義域内の定数 から変数 までの(端点が定数でない)積分で与えられる関数を関数 の を基点とする不定積分 (indefinite integral with base point) と言う。 (積分論) 3) ルベーグ積分論において定義域内の可測集合を変数とし、変数としての集合上での積分を値とする集合関数を関数 の 集合関数としての不定積分 (indefinite integral as a set-function) と言う。 海外の数学サイトでは wikipedia を含めて主として上記の (逆微分) 0) を記述している場合が多いが、岩波書店の数学辞典や積分論の現代的な専門書では上記の (積分論) での不定積分が記述されている。ただしこれらはそれぞれ無関係ではなく、後述するように、例えば (積分論) 1) は (積分論) 3) を数直線上で考えたものであって (逆微分) 0) と同等となるべきものであり、(積分論) 2) は本質的には (積分論) 1) や (積分論) 3) の一部分と見なすことができる。また (積分論) 2) から (逆微分) 0) を得ることもできるが、この対応は一般には全射でも単射でもない。これ以後、この項目で考える積分は、特に指定がない限り、リーマン積分であるものとする。 また後述するように、(積分論) の意味の不定積分を連続でない関数へ一般化すると、不定積分は通常の意味での原始関数となるとは限らなくなり、(初等数学) と一致しなくなるのだが、連続関数に対してはほぼ一致する概念であるため、しばしば混同して用いられる。.

新しい!!: 微分と不定積分 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: 微分と三角関数 · 続きを見る »

一次関数

y-切片を持つ。 数学、特に初等解析学における(狭義の)一次関数(いちじかんすう、linear function)は、(の)一次()、つまり次数 の多項式が定める関数 をいう。ここで、係数 は に依存しない定数であり、矢印は各値 に対して を対応させる関数であることを意味する。特に解析幾何学において、係数および定義域は実数の範囲で扱われ、その場合一次関数のグラフは平面直線である。 より広義には、係数や定義域として複素数やその他の環を考えたり、多変数の一次多項式函数や、あるいは一次式をベクトル空間や作用を持つ加群の文脈で理解することもある。 一次関数は線型関数( の直訳)やアフィン関数 とも呼ばれ、この場合しばしば定数関数 も含む。ベクトルを変数とする広義の一次関数はアフィン写像と呼ばれ、これはベクトルにベクトルを対応させる写像であるが、ふつう線型写像はその特別な場合 で斉一次函数で与えられる。 以下、解析幾何学における実函数としての一次函数について述べる。.

新しい!!: 微分と一次関数 · 続きを見る »

弱微分

数学の分野における弱微分(じゃくびぶん、)とは、通常の意味での関数の微分(強微分)の概念を、微分可能とは限らないが積分可能である関数(ルベーグ空間に属する関数)に対して一般化したものである。より一般的な定義については、分布(distribution)を参照されたい。.

新しい!!: 微分と弱微分 · 続きを見る »

作用素

数学における作用素(さようそ、operator)は、しばしば写像、函数、変換などの同義語として用いられる。函数解析学においては主にヒルベルト空間やバナッハ空間上の(必ずしも写像でない部分写像の意味での)線型変換を単に作用素と呼ぶ。そのような空間として特に函数空間と呼ばれる函数の成す無限次元線型空間は典型的であり(同じものを物理学の分野、特に量子力学などでは演算子(えんざんし)と呼ぶ)、このとき、作用素を関数を別の関数にうつす写像として理解することができる。数(定数関数)の集合に値をとる作用素は汎函数(はんかんすう、functional)と呼ばれる。 また、群や環が空間に作用しているとき、群や環の各元が定める空間上の変換、あるいはその変換が引き起こす関数空間上の変換のことを作用素ということがある。.

新しい!!: 微分と作用素 · 続きを見る »

微分可能

微分可能(びぶんかのう).

新しい!!: 微分と微分可能 · 続きを見る »

微分可能関数

数学の一分野である微分積分学において、可微分函数あるいは微分可能関数(びぶんかのうかんすう、)とは、その定義域内の各点において導関数が存在するような関数のことを言う。微分可能関数のグラフには、その定義域の各点において非垂直な接線が存在しなければならない。その結果として、微分可能関数のグラフは比較的なめらかなものとなり、途切れたり折れ曲がったりせず、や、垂直接線を伴う点などは含まれない。 より一般に、ある関数 f の定義域内のある点 x0 に対し、導関数 f′(x0) が存在するとき、f は x0 において微分可能であるといわれる。そのような関数 f はまた、点 x0 の近くでは線型関数によってよく近似されるため、x0 において局所線型(locally linear)とも呼ばれる。.

新しい!!: 微分と微分可能関数 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: 微分と微分幾何学 · 続きを見る »

微分作用素

数学における微分作用素(differential operator)は、微分演算 の函数として定義された作用素である。ひとまずは表記法の問題として、微分演算を(計算機科学における高階函数と同じ仕方で)入力函数を別の函数を返す抽象的な演算と考えるのが有効である。 本項では、最もよく扱われる種類である線型作用素を主に扱う。しかし、のような非線型微分作用素も存在する。.

新しい!!: 微分と微分作用素 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: 微分と微分積分学 · 続きを見る »

微分積分学の基本定理

微分積分学の基本定理(びぶんせきぶんがくのきほんていり、fundamental theorem of calculus)とは、「微分と積分が互いに逆の操作・演算である」 ということを主張する解析学の定理である。微分積分法の基本定理ともいう。ここで「積分」は、リーマン積分のことを指す。 この事実こそ、発見者のニュートンやライプニッツらを微分積分学の創始者たらしめている重要な定理である。 この定理は主に一変数の連続関数など素性の良い関数に対するものである。これを多変数(高次元)の場合に拡張する方法は一つではないが、ベクトル解析におけるストークスの定理はその一例として挙げられるだろう。また、どの程度病的な関数について定理が成り立つのかというのも意味のある疑問であるといえる。 現在では微分積分学の初期に学ぶ基本的な定理であるが、この定理が実際に発見されたのは比較的最近(17世紀)である。この定理が発見されるまでは、微分法(曲線の接線の概念)と積分法(面積・体積などの求積)はなんの関連性も無い全く別の計算だと考えられていた。.

新しい!!: 微分と微分積分学の基本定理 · 続きを見る »

微分環

数学において、微分環(びぶんかん、differential ring)、微分体(びぶんたい、differential field)、微分多元環(びぶんたげんかん、differntial algebra)は、それぞれ有限個の(加法的または線型な単項演算で積の微分法則(ライプニッツ則)を満足する)を備えた環、体、多元環である。微分環の微分はしばしば 等の記号を用いて表される。微分体の自然な例として、複素数体上の一変数有理関数体 に微分として普通の意味での微分 をとったものを挙げることができる。 そのような代数系自身の研究およびそれら代数系の微分方程式の代数的研究に対する応用を研究する分野を微分代数学 (Differntial Algebra) と呼ぶ。微分環はが導入した。.

新しい!!: 微分と微分環 · 続きを見る »

微分法

数学における微分法(びぶんほう、differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 微分は量を扱うほとんど全ての分野に応用を持つ。たとえば物理学において、動く物体の変位の時間に関する導函数はその物体の速度であり、速度の時間に関する導函数は加速度である。物体の運動量の導函数はその物体に及ぼされた力に等しい(この微分に関する言及を整理すればニュートンの第二法則に結び付けられる有名な方程式 が導かれる)。化学反応の反応速度も導函数である。オペレーションズ・リサーチにおいて導函数は物資転送や工場設計の最適な応報の決定に用いられる。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。.

新しい!!: 微分と微分法 · 続きを見る »

ミネソタ大学ツインシティー校

ミネソタ大学ツインシティー校(The University of Minnesota, TwinCities)は、アメリカ合衆国ミネソタ州最大の都市ミネアポリスと同州の州都セントポールにまたがって本部を置く、同国最大の研究機関型州立総合大学の一つである。ミネアポリスとセントポールの二都市を中心とした大都市圏が「Twin Cities(=双子都市)」と呼称されるため、学校名も「ミネソタ大学ツインシティー校」という。1851年に設置された。大学の略称は「U of M」、「UMTC」。同州のミネソタ州立大学(w:Minnesota State University)とは別の大学組織である。 ツインシティー校はミネソタ大学(The University of Minnesota)の旗艦校(本校)であり、ツインシティー校、ダルース(Duluth)校、モーリス(Morris)校、クルークストン(Crookston)校、ロチェスター(Rochester)校の5校からなる、ミネソタ大学系列の中で最古かつ最大の大学である。州立大学の大学として「パブリック・アイビー」の一つに数えられることもある。医療、理工学の研究実績で名高い。1908年より、北米トップレベルの研究型大学で組織されるアメリカ大学協会(The Association of American Universities, AAU)に加盟している。これまでに9名の卒業生、15名の教授がノーベル賞を受賞、86名のグッゲンハイムフェローをはじめ、数多くの分野にわたり人材を輩出してきた。 総学生数は50,678人(2015年統計)で、その規模と同時に17対1の学生対教員の比率が保たれ充実した教育・研究機関としても知られる。143の学部の学位と150の大学院の学位を授与している。国際交流にも力を入れており、日本の一橋大学、名古屋大学、広島大学、上智大学をはじめ、海外250校以上の大学との交換留学プログラムを有する。.

新しい!!: 微分とミネソタ大学ツインシティー校 · 続きを見る »

ハーディ空間

数学の複素解析の分野におけるハーディ空間(ハーディくうかん、)あるいはハーディ級(Hardy class)Hp とは、単位円板あるいは上半平面上のある種の正則函数の空間のことを言う。リース・フリジェシュ によって導入され、その名は論文 の著者であるゴッドフレイ・ハロルド・ハーディにちなむ。実解析におけるハーディ空間は、(超函数の意味で)複素ハーディ空間の正則函数の境界値であるような、実数直線上のある超函数からなる空間で、函数解析学におけるLp空間と関係する。1 ≤ p ≤ ∞ に対し、それら実ハーディ空間 Hp は Lp の部分集合であるが、p p はいくつか望ましくない性質を持つ一方、ハーディ空間はより良い振る舞いをする。 複素数の場合の上の正則函数や、実数の場合の Rn 上の超函数の空間など、高次元の一般化がいくつか存在する。 ハーディ空間には解析学それ自身において多くの応用が存在すると共に、制御理論(H∞制御理論など)や散乱理論においても多くの応用が存在する。.

新しい!!: 微分とハーディ空間 · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: 微分とバナッハ空間 · 続きを見る »

ヤコビ行列

数学、特に多変数微分積分学およびベクトル解析におけるヤコビ行列(やこびぎょうれつ、Jacobian matrix)あるいは単にヤコビアンまたは関数行列(かんすうぎょうれつ、Funktionalmatrix)は、一変数スカラー値関数における接線の傾きおよび一変数ベクトル値函数の勾配の、多変数ベクトル値関数に対する拡張、高次元化である。名称はカール・グスタフ・ヤコブ・ヤコビに因む。多変数ベクトル値関数 のヤコビ行列は、 の各成分の各軸方向への方向微分を並べてできる行列で \end\quad (f.

新しい!!: 微分とヤコビ行列 · 続きを見る »

ライプニッツの記法

ライプニッツの記法 (らいぷにっつのきほう、英語: Leibniz's notation) とは、数学における微分の記法のひとつである。 Δx と Δy がそれぞれ x と y の有限微小変化量を表すように x と y の微小な変化量すなわち無限小変化量を表す記号として dx と dy を用いる。17世紀のドイツの哲学者・数学者であるゴットフリート・ライプニッツにより提唱された。x の関数 y すなわち、 において x に関する y の微分が、 で表されるとき、それはライプニッツによると x の微小変化量と y の微小変化量の比、すなわち で表される。ここに右辺は x における 微分 f のラグランジュの記法である。同様に、現代の数学者はしばしば不定積分、 を次の極限で表す。 ここに Δx は xi の間隔であり、ライプニッツは無限小 f(x) dx の総和 (積分記号は総和を意味する) として表現した。 このライプニッツによる考え方の長所は、その次元解析との整合性である。例えば、ライプニッツの記法では二階導関数は、 であり、\frac と同じ次元を持つ。また、多くの微積分に関する公式の表現との整合性があることも特筆できる(#微分に関するライプニッツの記法)。.

新しい!!: 微分とライプニッツの記法 · 続きを見る »

リプシッツ連続

解析学におけるリプシッツ連続性(リプシッツれんぞくせい、Lipschitz continuity)は、に名を因む、函数のより強い形の一様連続性である。直観的には、リプシッツ連続函数は変化の速さが制限される。即ち、適当な有限値の実数が存在して、その函数のグラフ上の任意の二点を結ぶ直線の傾きの絶対値はその実数を超えない。この上界をその函数の「リプシッツ定数」(あるいは)と呼ぶ。例えば一階微分が有界な任意の函数はリプシッツである。 微分方程式論において、リプシッツ連続性は初期値問題の解の存在と一意性を保証するの中心的な条件である。リプシッツ連続性の特別な場合で、縮小性はバナッハの不動点定理において用いられる。 実数直線の有界閉集合上で定義される函数に関して、以下のような包含関係の鎖が知られている: また、 も成り立つ。.

新しい!!: 微分とリプシッツ連続 · 続きを見る »

ワイエルシュトラス関数

ワイエルシュトラス関数(ワイエルシュトラスかんすう、Weierstrass function)は、1872年にカール・ワイエルシュトラスにより提示された実数関数で、連続関数であるにもかかわらず至るところ微分不可能な関数である。の例として取り上げられることがある。 「孤立点を除くと連続関数は微分可能である」という認識を変えた初めての例として、ワイエルシュトラス関数は歴史的に重要である。.

新しい!!: 微分とワイエルシュトラス関数 · 続きを見る »

ヘヴィサイドの階段関数

ヘヴィサイドの階段関数(ヘヴィサイドのかいだんかんすう、Heaviside step function)は、正負の引数に対しそれぞれ 1, 0 を返す階段関数 である。名称はオリヴァー・ヘヴィサイドにちなむ。ヘヴィサイド関数と呼ばれることもある。通常、H(x) や Y(x) などで表されることが多い。 単位ステップ関数と似ているが、こちらは と x.

新しい!!: 微分とヘヴィサイドの階段関数 · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 微分とテイラー展開 · 続きを見る »

デルタ

デルタ (Delta) はギリシャ文字の一種。転じて、以下のような用法を示す。.

新しい!!: 微分とデルタ · 続きを見る »

ディラック測度

数学におけるディラック測度(ディラックそくど、)は、適当な集合 (に の部分集合からなる任意のσ-代数を入れたもの)上で、点 に対して、定義される測度 であって、任意の(可測)部分集合 に対して を満たすものを言う。ただし は の指示関数を表す。 ディラック測度は確率測度であり、確率の言葉で言えば標本空間 においてほとんど確実に が起こるかどうかを表すものである。この測度を における単と呼ぶこともある。ただし、ディラックデルタを(デルタ列の極限として)点列で定義する場合には、ディラック測度を原子測度(atomic measure)として扱うことは正しくない。ディラック測度は 上の確率測度全体の成すの凸集合のである。 その名称は、測度が特別な種類のシュヴァルツ超函数として得られるという事実に基づいての、(例えば実数直線上で定義される)シュワルツ超函数として考えたディラックのデルタ関数からの逆成である。また、等式 (これをデルタ函数の定義の一部として書くときには の形に書くのが普通)は、ルベーグ積分論における定理として成立する。.

新しい!!: 微分とディラック測度 · 続きを見る »

フレシェ微分

数学におけるフレシェ微分(フレシェびぶん、Fréchet derivative)は、モーリス・ルネ・フレシェの名にちなむ、バナッハ空間上で定義される微分法の一種である。フレシェ微分は、実一変数の実数値函数の導函数を、実多変数のベクトル値函数の場合へ一般化するのに広く用いられ、また変分法で広範に用いられる汎函数微分を定義するのにもつかわれる。 一般に、これは実一変数実数値函数の微分の概念をバナッハ空間上の写像へ拡張するものであり、より一般のガトー微分(古典的な方向微分の一般化)とは対比されるべきものである。 フレシェ微分は解析学や物理科学の至る所(特に、変分法、非線型解析学の多く、および非線型函数解析)で非線型問題に応用を持つ。.

新しい!!: 微分とフレシェ微分 · 続きを見る »

フレシェ空間

数学の関数解析学周辺分野におけるフレシェ空間(フレシェくうかん、Fréchet spaces)は、モーリス・フレシェに名を因む、位相空間の一種である。フレシェ空間は(ノルムの導く距離に関して完備なノルム付き線型空間である)バナッハ空間を一般化するもので、平行移動不変距離関数に関して完備な局所凸空間を言う。バナッハ空間との違いは、その距離がノルムから生じるものでなくともよいことである。 フレシェ空間の位相構造は、バナッハ空間のと比べてノルムがない分だけより複雑なものではあるけれども、ハーン・バナッハの定理や開写像定理、バナッハ・シュタインハウスの定理などの関数解析学における重要な結果の多くが、フレシェ空間においてもやはり成り立つ。 無限回微分可能関数の成す空間などは、フレシェ空間の典型例である。.

新しい!!: 微分とフレシェ空間 · 続きを見る »

ニュートンの記法

ニュートンの記法(にゅーとんのきほう、Newton's notation)は、数学における微分の記法のひとつである。 この記法はアイザック・ニュートンが (流率・流動率) と呼称した時間に対する変化率を表すために導入したもので、関数名の上部に微分の階数と同数のドット符号を記す。 ニュートンの記法は主として古典力学あるいは機械工学で用いられ、次のように定義される。 ドット記号の個数により微分回数を表すため、あまり高階の微分には有用ではない。しかし古典力学あるいは他の工学分野の対象においては高階導関数はあまり出現せず、例えば位置の一階微分である速度、二階微分である加速度などとしての利用が大半である(例外として躍度がある)。 ニュートンの記法は、時間に限らずあらゆる変数の微分に対して用いられてきたが、現在では、物理学などにおいては専ら時間微分に対してのみ用いられている。これはニュートンの記法が微分する変数を明示しないためである。ライプニッツの記法などでは、どの独立変数に対する微分かを明示しているため、混同の恐れがある限りにおいて、ニュートンの記法は用いない。 ニュートンの記法は、ラグランジュ力学において、一般化座標 と組になる一般化速度 を表わすために広く用いられている。 積分についてはニュートンは標準的記法は考案しなかったが、広く認知・定着したのはライプニッツの積分の記法である。.

新しい!!: 微分とニュートンの記法 · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: 微分とベクトル場 · 続きを見る »

ベクトル値函数

数学のとくに初等解析学におけるベクトル値函数(ベクトルちかんすう、vector-valued function)あるいはベクトル函数 (vector function) は、実数ベクトル空間 に値をとるを言う。ベクトル値函数 に対し、像ベクトルの第 -成分 のみを追跡する函数を とすれば、 は実函数 たちの n-組として表すことができる。定義域は一次元でもそれ以上の次元でもよい。 例えば、二次元ベクトルに値を取るベクトル値函数は、 を用いて \mathbf(x).

新しい!!: 微分とベクトル値函数 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 微分とベクトル空間 · 続きを見る »

初等関数

初等関数(しょとうかんすう、)とは、実数または複素数の1変数関数で、代数関数、指数関数、対数関数、三角関数、逆三角関数および、それらの合成関数を作ることを有限回繰り返して得られる関数のことである。ガンマ関数、楕円関数、ベッセル関数、誤差関数などは初等関数でない。初等関数のうちで代数関数でないものを初等超越関数という。双曲線関数やその逆関数も初等関数である。 初等関数の導関数はつねに初等関数になるが、初等関数の不定積分や初等関数を用いた微分方程式の解なども一般に初等関数にはならない。例えば、次の二つの不定積分 f(x).

新しい!!: 微分と初等関数 · 続きを見る »

∂は数学記号である。 デル(del)、ディー、パーシャル・ディー(partial d)またはパーシャル、ラウンド・ディー(rounded d)などと読まれることが多い。.

新しい!!: 微分と∂ · 続きを見る »

オーギュスタン=ルイ・コーシー

ーギュスタン=ルイ・コーシー(Augustin Louis Cauchy, 1789年8月21日 - 1857年5月23日)はフランスの数学者。解析学の分野に対する多大な貢献から「フランスのガウス」と呼ばれることもある。これは両者がともに数学の厳密主義の開始者であった事にも関係する。他に天文学、光学、流体力学などへの貢献も多い。.

新しい!!: 微分とオーギュスタン=ルイ・コーシー · 続きを見る »

カール・ワイエルシュトラス

ール・ワイエルシュトラス カール・テオドル・ヴィルヘルム・ワイエルシュトラス(Karl Theodor Wilhelm Weierstraß, 1815年10月31日 – 1897年2月19日)はドイツの数学者である。姓のワイ (Wei) の部分はヴァイと表記するほうが正確である。また、"er" に当たる部分はエル/ヤ/ア、"st" はシュト/スト、"raß" はラス/ラースとそれぞれ表記されることがある。.

新しい!!: 微分とカール・ワイエルシュトラス · 続きを見る »

カーンアカデミー

ーンアカデミーは、2006年にサルマン・カーン()により設立された教育系非営利団体である。 YouTubeで短時間の講座を配信し、運営サイトにて練習問題や教育者向けのツールを提供しており、これらは世界中の誰でも無料で利用できる。.

新しい!!: 微分とカーンアカデミー · 続きを見る »

ガトー微分

数学におけるガトー微分(ガトーびぶん、Gâteaux differential, Gâteaux derivative)は、第一次世界大戦において夭折したフランス人数学者に名を因む、微分学における方向微分の概念の一般化で、バナハ空間などの局所凸位相線型空間の間の函数に対して定義される。バナハ空間上のフレシェ微分同様に、ガトー微分は変分法や物理学で広く用いられる汎函数微分の定式化にしばしば用いられる。 他の微分法と異なり、ガトー微分は必ずしも線型でないが、ガトー微分の定義にそれが連続線型変換となることも仮定することがよくある。文献によっては、例えば は(非線型かもしれない)ガトー微分係数 と(必ず線型である)ガトー導函数 をはっきりと区別する。応用に際して、連続線型性がそれぞれの状況において自然に課されるもっと原始的な条件、例えばにおける複素可微分性や非線型解析学における連続的可微分性など、から従うということも多い。.

新しい!!: 微分とガトー微分 · 続きを見る »

グラフ (関数)

関数のグラフ(graph)は、直観的には、関数を平面内の曲線もしくは空間内の曲面としてダイアグラム状に視覚化したものである。形式的には、関数 のグラフとは、順序対 の集合である。 例えば、 と が常に実数であるような関数の場合、グラフは座標平面上の点の集まりとみなすことができる。このような関数のうち、応用上重要な関数の多くは、グラフを座標平面上に曲線として描くことが可能である。 グラフの概念は、関数のみならず、より一般の写像や対応に対しても定義される。標語的には、グラフは関数や対応を特徴付ける集合であるといえる。.

新しい!!: 微分とグラフ (関数) · 続きを見る »

シュワルツ超函数

解析学におけるシュワルツ超函数(シュワルツちょうかんすう、distribution; 分布)あるいは超函数(generalized function; 広義の函数)は、函数の一般化となる数学的対象である。シュワルツ超函数の概念は、古典的な意味での導函数を持たない函数に対しても微分を可能とする。特に、任意の局所可積分函数は超函数の意味で微分可能である。シュワルツ超函数は偏微分方程式の弱解(広義の解)の定式化に広く用いられる。古典的な意味での解(真の解)が存在しないか構成が非常に困難であるような場合でも、その微分方程式の超函数解はしばしばより容易に求まる。シュワルツ超函数の概念は、多くの問題が自然に解や初期条件がディラック・デルタのような超函数となるような偏微分方程式として定式化される物理学や工学においても重要である。 広義の函数としての超函数 (generalized function) は1935年セルゲイ・ソボレフによって導入されたが、その後1940年代になって一貫した超函数論を展開するローラン・シュヴァルツによって再導入される。 超函数(distribution)の拡張の一つとして、佐藤超函数があるとみなすことができる。.

新しい!!: 微分とシュワルツ超函数 · 続きを見る »

ジョゼフ=ルイ・ラグランジュ

ョゼフ=ルイ・ラグランジュ(Joseph-Louis Lagrange, 1736年1月25日 - 1813年4月10日)は、数学者、天文学者である。オイラーと並んで18世紀最大の数学者といわれている。イタリア(当時サルデーニャ王国)のトリノで生まれ、後にプロイセン、フランスで活動した。彼の初期の業績は、微分積分学の物理学、特に力学への応用である。その後さらに力学を一般化して、最小作用の原理に基づく、解析力学(ラグランジュ力学)をつくり出した。ラグランジュの『解析力学』はラプラスの『天体力学』と共に18世紀末の古典的著作となった。.

新しい!!: 微分とジョゼフ=ルイ・ラグランジュ · 続きを見る »

ストーン=ワイエルシュトラスの定理

数学におけるストーン・ワイエルシュトラスの定理とは、局所コンパクト空間上の連続関数の代数系における部分代数の稠密性に関する定理である。カール・ワイエルシュトラスによって1885年に示されたワイエルシュトラスの近似定理がその原型であり、1937年にマーシャル・ストーンによって大幅に一般化された現在の形の結果が得られた。 ワイエルシュトラスの近似定理は、閉区間上のどんな連続関数も多項式関数によって任意の精度で一様に近似できることを述べている。 ストーン・ワイエルシュトラスの定理は、局所コンパクトハウスドルフ空間 X 上定められた複素数値の連続関数の代数系 C(X) の部分代数 A が一様収束の位相に関して稠密になるための十分条件として、.

新しい!!: 微分とストーン=ワイエルシュトラスの定理 · 続きを見る »

ステファン・バナフ

テファン・バナフ(Stefan Banach, 1892年3月30日 - 1945年8月31日)はポーランドの数学者。バナッハ空間論、実解析論、数学基礎論などで多大な業績をのこした。ワルシャワ学派、クラクフ学派、ルヴフ学派の3派で構成されるポーランド学派のうち、ルヴフ学派のオリジナルメンバーの一人。.

新しい!!: 微分とステファン・バナフ · 続きを見る »

スカラー場

ラー場(スカラーば、scalar field)とは、数学および物理学において、空間の各点に数学的な数やなんらかの物理量のスカラー値を対応させた場である。スカラー場には「空間(あるいは時空)の同一点におけるスカラー場の値が、観測者が同じ単位を用いる限りにおいて必ず一致する」という意味で座標に依存しない (coordinate-independent) ことが要求される。物理学で用いられるスカラー場の例としては、空間全体にわたる温度分布や、液体の圧力分布、ヒッグス場のようなスピンを持たない量子場などが挙げられる。これらの場はスカラー場の理論における主題である。.

新しい!!: 微分とスカラー場 · 続きを見る »

ソボレフ空間

数学においてソボレフ空間(ソボレフくうかん、Sobolev space)は、函数からなるベクトル空間で、函数それ自身とその与えられた階数までの導函数の ''Lp''-ノルムを組み合わせて得られるノルムを備えたものである。ここでいう微分を適当な弱い意味での微分と解釈することにより、ソボレフ空間は完備距離空間、したがってバナッハ空間を成す。直観的には、ソボレフ空間は(偏微分方程式のような応用範囲に対して)十分多くの導函数を持つ函数からなるバナッハ空間あるいはヒルベルト空間であって、函数の大きさと滑らかさの両方を測るようなノルムを備えたものということである。 ソボレフ空間の名称はロシア人数学者のセルゲイ・ソボレフに因む。ソボレフ空間の重要性は、偏微分方程式の解というものは古典的な意味での導函数を備える連続函数からなる古典的な空間の中ではなく、むしろソボレフ空間の中にあるとして捉えたほうが自然であるという事実にある。.

新しい!!: 微分とソボレフ空間 · 続きを見る »

傾き (数学)

数学における平面上の直線の傾き(かたむき、slope)あるいは勾配(こうばい、gradient)は、その傾斜の具合を表す数値である。ただし、鉛直線に対する傾きは定義されない。 傾きは普通、直線上の2点間の変化の割合、すなわち x の増加量に対する y の増加量の比率として定義される。また、同値な定義として、傾き m は傾斜角を θ として と書くことができる。 曲線上の微分可能な1点に対しても、傾斜の具合を表す数値(微分係数)が、傾きの考え方により定義できる。 傾きの概念は、地理学および土木工学における斜度や勾配(たとえば道路など)に直接応用される。.

新しい!!: 微分と傾き (数学) · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: 微分と冪乗 · 続きを見る »

写像の微分

数学の一分野、微分幾何学における多様体間の写像の微分(びぶん、differential)または全微分 は、通常の解析学における全微分の概念を可微分写像に対して一般化するもので、可微分多様体間の可微分写像のある意味での最適線型近似を各点において与えるものである。より具体的に、可微分多様体 の間の可微分写像 に対し、 の における微分(係数) は、 における の接空間から における の接空間への線型写像として与えられる。 各点における微分係数 は、接束を考えることにより、 を動かして微分写像(導写像) にすることができる。 は接写像とも呼ばれ、可微分多様体の接束をとる操作(接構成)は接写像を伴って可微分多様体の圏からベクトル束の圏への函手(接函手)を定める。.

新しい!!: 微分と写像の微分 · 続きを見る »

凸関数

凸関数(とつかんすう、convex function)、下に凸関数 とは、ある区間で定義された実数値関数 で、区間内の任意の 2 点 と開区間 内の任意の に対して を満たすものをいう。言い換えれば、エピグラフ(グラフ上およびグラフの上部の点の集合)が凸集合である関数である。より一般に、ベクトル空間の凸集合上定義された関数に対しても同様に定義する。 また、狭義凸関数とは、任意の異なる 2 点 と開区間 内の任意の に対して を満たす関数である(従って、下に凸な関数の事である)。 が凸関数のとき、 を凹関数(おうかんすう、)と呼ぶ。凸関数を「下に凸な関数」、凹関数を「上に凸な関数」と称することもある。.

新しい!!: 微分と凸関数 · 続きを見る »

全微分

微分積分学における多変数函数の全微分商、全微分係数あるいは単に全微分(ぜんびぶん、total derivative)は、外生的な変数の(任意に小さな)変分に対する函数の変分の割合(差分商)の極限である。このとき、外生的な変数による直接的な影響のみならず函数が持つ他の内生的変数を通じてもたらされる影響をも考慮する必要がある。これは(差分商の極限として定義される通常の実函数の微分を形式的に多変数化して得られる)より弱い概念である偏微分を用いるのでは有効な結果を得られないような解析学的主張に対して、より多くの結果を得られるということであり。またこの意味において、微分積分学の様々な概念がこの全微分をもとにして定義される。現代数学の多くの文献において、全微分(全微分可能)を単に微分(微分可能)のように言うことはよくある。 多変数函数に対する全微分可能性は、多変数の微分積分学における基本性質の一つである。函数の与えられた点における全微分可能性は、函数が局所的に線型変換で近似されることを意味している。これに対し、(任意方向の)偏微分は、任意方向を持つ直線上における線形近似に過ぎず、全体としては線型近似になるとは限らない。函数 の変数 に関する全微分の計算において、 以外の変数を定数と見なすことは必要でなく、実際他の変数が に依存することが許される。全微分では の に対する依存関係として、このような変数間の陰伏的な従属関係も含めて考えるのであるChiang, Alpha C. Fundamental Methods of Mathematical Economics, McGraw-Hill, third edition, 1984.

新しい!!: 微分と全微分 · 続きを見る »

勾配 (ベクトル解析)

ベクトル解析におけるスカラー場の勾配(こうばい、gradient; グラディエント)は、各点においてそのスカラー場の変化率が最大となる方向への変化率の値を大きさにもつベクトルを対応させるベクトル場である。簡単に言えば、任意の量の空間における変位を、傾きとして表現(例えば図示)することができるが、そこで勾配はこの傾きの向きや傾きのきつさを表している。 ユークリッド空間上の関数の勾配を、別なユークリッド空間に値を持つ写像に対して一般化したものは、ヤコビ行列で与えられる。さらに一般化して、バナッハ空間から別のバナッハ空間への写像の勾配をフレシェ微分を通じて定義することができる。.

新しい!!: 微分と勾配 (ベクトル解析) · 続きを見る »

瞬間

間(しゅんかん)とは、ごく短い時間の事である。何か物事が起こってその直後の物事までの時間を測定できないくらいの間。.

新しい!!: 微分と瞬間 · 続きを見る »

積の微分法則

微分積分学における積の法則(せきのほうそく、product rule;ライプニッツ則)は、二つ(あるいはそれ以上)の函数の積の導函数を求めるのに用いる公式で、 あるいはライプニッツの記法では と書くことができる。あるいは無限小(あるいは微分形式)の記法を用いて と書いてもよい。三つの函数の積の導函数は である。.

新しい!!: 微分と積の微分法則 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 微分と積分法 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 微分と線型写像 · 続きを見る »

線型近似

数学における線型近似(せんけいきんじ、linear approximation)とは、一般の関数を一次関数を用いて(より正確に言えばアフィン写像を用いて)近似することである。 例えば、2回微分可能な一変数関数 f は、テイラーの定理の n.

新しい!!: 微分と線型近似 · 続きを見る »

線型性

線型性(せんけいせい、英語: linearity)あるいは線型、線形、線状、リニア(せんけい、英語: linear、ラテン語: linearis)とは、直線そのもの、または直線のようにまっすぐな図形やそれに似た性質をもつ対象および、そのような性質を保つ変換などを指して用いられている術語である。対義語は非線型性(英語:Non-Linearity)である。 英語の数学用語のlinear にあてる日本語訳としては、線型が本来の表記であると指摘されることもあるが、他にも線形、線状などといった表記もしばしば用いられている。また一次という表記・表現もしばしば用いられている。というのはlinearは、(多変数の)斉一次函数を指していると考えて間違っていない場合も多いためである。.

新しい!!: 微分と線型性 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 微分と絶対値 · 続きを見る »

無限小

数学における無限小(むげんしょう、infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さかろうと、角度や傾きといったある種の性質はそのまま有効であることである。 術語 "infinitesimal" は、17世紀の造語 infinitesimus(もともとは列の「無限番目」の項を意味する言葉)に由来し、これを導入したのは恐らく1670年ごろ、メルカトルかライプニッツである。無限小はライプニッツがやなどをもとに展開した無限小解析における基本的な材料である。よくある言い方では、無限小対象とは「可能な如何なる測度よりも小さいが零でない対象である」とか「如何なる適当な意味においても零と区別することができないほど極めて小さい」などと説明される。故に形容(動)詞的に「無限小」を用いるときには、それは「極めて小さい」という意味である。このような量が意味を持たせるために、通常は同じ文脈における他の無限小対象と比較をすること(例えば微分商)が求められる。無限個の無限小を足し合わせることで積分が与えられる。 シラクサのアルキメデスは、自身の (機械的定理証明法)においてと呼ばれる手法を応分に用いて領域の面積や立体の体積を求めた。正式に出版された論文では、アルキメデスは同じ問題を取り尽くし法を用いて証明している。15世紀にはニコラウス・クザーヌスの業績として(17世紀にはケプラーがより詳しく調べているが)、特に円を無限個の辺を持つ多角形と見做して円の面積を計算する方法が見受けられる。16世紀における、任意の実数の十進表示に関するシモン・ステヴィンの業績によって、実連続体を考える下地はすでにでき上がっていた。カヴァリエリの不可分の方法は、過去の数学者たちの結果を拡張することに繋がった。この不可分の方法は幾何学的な図形を 1 の量に分解することと関係がある。ジョン・ウォリスの無限小は不可分とは異なり、図形をもとの図形と同じ次元の無限に細い構成要素に分解するものとして、積分法の一般手法の下地を作り上げた。面積の計算においてウォリスは無限小を 1/∞ と書いている。 ライプニッツによる無限小の利用は、「有限な数に対して成り立つものは無限な数に対しても成り立ち、逆もまた然り」有限/無限というのは個数に関して言うのではない(有限個/無限個ではない)ことに注意せよ。ここでいう「有限」とは無限大でも無限小でもないという意味である。や(割り当て不能な量を含む式に対して、それを割り当て可能な量のみからなる式で置き換える具体的な指針)というような、経験則的な原理に基づくものであった。18世紀にはレオンハルト・オイラーやジョゼフ=ルイ・ラグランジュらの数学者たちによって無限小は日常的に使用されていた。オーギュスタン=ルイ・コーシーは自身の著書 (解析学教程)で、無限小を「連続量」(continuity) ともディラックのデルタ函数の前身的なものとも定義した。カントールとデデキントがスティーヴンの連続体をより抽象的な対象として定義したのと同様に、は函数の増大率に基づく「無限小で豊饒化された連続体」(infinitesimal-enriched continuum) に関する一連の論文を著した。デュ・ボア=レーモンの業績は、エミール・ボレルとトアルフ・スコーレムの両者に示唆を与えた。ボレルは無限小の増大率に関するコーシーの仕事とデュ・ボア=レーモンの仕事を明示的に結び付けた。スコーレムは、1934年に最初の算術の超準モデルを発明した。連続の法則および無限小の数学的に厳密な定式化は、1961年にアブラハム・ロビンソンによって達成された(ロビンソンは1948年にが、および1955年にが成した先駆的研究に基づき超準解析を展開した)。ロビンソンの超実数 (hyperreals) は無限小で豊饒化された連続体の厳密な定式化であり、がライプニッツの連続の法則の厳密な定式化である。また、はフェルマーの (adequality, pseudo-equality) の定式化である。 ウラジーミル・アーノルドは1990年に以下のように書いている.

新しい!!: 微分と無限小 · 続きを見る »

片側極限

数学の微分積分学における片側極限(かたがわきょくげん、)とは、実変数関数 f(x) の x が、ある点に上側あるいは下側から近付くときに得られる二つの極限のいずれかのことを言う。x が a に減少する形で近付く(x が a に「右から」あるいは「上から」近付く)時の極限は などと書く。同様に、x が a に増加する形で近付く(x が a に「左から」あるいは「下から」近付く)時の極限は などと書く。 f(x) の x が a に近付く時の通常の意味での極限が存在するなら、二つの片側極限は存在し、それらは一致する。極限 が存在しなくても、二つの片側極限が存在する場合もある。そのため、x が a に近付く時の極限を両側極限と呼ぶこともある。片側極限の一方は存在するがもう一方は存在しない場合や、いずれの片側極限も存在しない場合もあり得る。 右側極限は、次のように厳密に定義することが出来る: 同様に、左側極限は次のように厳密に定義することが出来る: ここで I は f の定義域に含まれるある区間を表す。.

新しい!!: 微分と片側極限 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 微分と直線 · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: 微分と違いを除いて · 続きを見る »

領域 (解析学)

数学の解析学の分野における領域(りょういき、)とは、有限次元ベクトル空間の開部分集合で連結なもののことを言う。例えば偏微分方程式論やソボレフ空間論などにおいて、定義域(domain of definition)の意味で領域 (domain) という語を用いることがあるが、それとは異なる。 領域の境界の滑らかさについては、その領域上で定義される関数が満足する様々な性質に応じて、様々な要求がなされる。例えば、積分定理(グリーンの定理やストークスの定理)やソボレフ空間の性質、あるいは境界上の測度やの空間(境界上で定義される滑らかな関数の空間)を定義するために、そのような要求がなされる。広く扱われている領域としては、連続な境界を備える領域、リプシッツ領域、''C''1-級の境界を備える領域などがある。 有界領域(bounded domain)とは有界集合であるような領域のことを言い、対して有界領域の補集合の内部のことを外部(exterior)あるいは外部領域(external domain)と言う。 複素解析の分野における複素領域(complex domain)あるいは単純に領域(domain)とは、複素平面 内の任意の連結開部分集合のことを言う。例えば、複素平面全体も複素領域であり、開単位円や開上半平面なども複素領域である。正則関数に対しては、しばしば、複素領域が定義域の役割を担うことがある。 多変数複素関数の研究においては、 の任意の連結開部分集合を含むように、定義域の拡張が行われる。.

新しい!!: 微分と領域 (解析学) · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 微分と行列 · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: 微分と複素平面 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 微分と複素数 · 続きを見る »

解析関数

複素変数 z の複素数値関数 f(z) が1点 z.

新しい!!: 微分と解析関数 · 続きを見る »

超実数

超実数(ちょうじっすう、hyperreal number)または超準実数(ちょうじゅんじっすう、nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 は実数体 の拡大体であり、 の形に書ける如何なる数よりも大きい元を含む。そのような数は無限大であり、その逆数は無限小である。 の語はが1948年に導入した。 超実数は(ライプニッツの経験則的なを厳密なものにした)を満たす。この移行原理が主張するのは、 についての一階述語論理の真なる主張は においても真であることである。例えば、加法の可換則 は、実数におけると全く同様に、超実数に対しても成り立つ。また例えば は実閉体であるから、 も実閉体である。また、任意の整数 に対して が成立するから、任意の に対しても が成立する。超冪に対する移行原理は1955年のウォシュの定理の帰結である。 無限小を含むような論法の健全性に対する関心は、アルキメデスがそのような証明を取り尽くし法など他の手法によって置き換えた、古代ギリシャ時代の数学にまで遡る。1960年代にロビンソンは、超実数体が論理的に無矛盾であることと実数体が論理的に無矛盾であることが同値であることを示した。これは、ロビンソンが描いた論理的な規則に従って操作されなかったならば、あらゆる無限小を含む証明が不健全になる恐れが残ることを示している。 超実数の応用、特に解析学における諸問題への移行原理の適用は超準解析と呼ばれる。一つの例は、微分や積分のような解析学の基礎概念を複数の量化子を用いる論理的複雑さを回避して直接的に定義することである。つまり、 の導関数は、 になる。 ただし、 は無限小超実数で、 とは有限超実数から実数への関数で、「有限超実数にそれに無限に近いただ一つの実数への関数」というである。積分も同様に、適切な無限和の標準部によって定義される。.

新しい!!: 微分と超実数 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 微分と関数 (数学) · 続きを見る »

関数の微分

微分積分学における関数の微分(differential of a function)とは、直感的には変数の無限小増分に対する関数の増分であり、独立変数を変化させた時の関数値の変化のを表す。具体的には、実変数関数 y.

新しい!!: 微分と関数の微分 · 続きを見る »

自動微分

自動微分(じどうびぶん、アルゴリズム的微分とも)とは、プログラムで定義された関数を解析し、偏導関数の値を計算するプログラムを導出する技術である。自動微分は複雑なプログラムであっても加減乗除などの基本的な算術演算や基本的な関数(指数関数・対数関数・三角関数など)のような基本的な演算の組み合わせで構成されていることを利用し、これらの演算に対して連鎖律を繰り返し適用することによって実現される。自動微分を用いることで偏導関数値を少ない計算量で自動的に求めることができる。 自動微分は.

新しい!!: 微分と自動微分 · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

新しい!!: 微分と自然対数 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: 微分と速度 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 微分と連続 (数学) · 続きを見る »

連鎖律

微分法において連鎖律(れんさりつ、chain rule)とは、複数の関数が合成された合成関数を微分するとき、その導関数がそれぞれの導関数の積で与えられるという関係式のこと。.

新しい!!: 微分と連鎖律 · 続きを見る »

逆双曲線関数

逆双曲線関数(ぎゃくそうきょくせんかんすう、inverse hyperbolic functions)は、数学において与えられた双曲線関数の値に対応してを与える関数。双曲角の大きさは双曲線 x y.

新しい!!: 微分と逆双曲線関数 · 続きを見る »

逆三角関数

数学において、逆三角関数(ぎゃくさんかくかんすう、inverse trigonometric function、時折 )は(関数の定義域を適切に制限した)三角関数の逆関数である。具体的には、それらは正弦 、余弦 、正接 、余接 、正割 、余割 関数の逆関数である。それらは角度の三角比の任意から角度を得るために使われる。逆三角関数は工学、航法、物理学、幾何学において広く使われる。.

新しい!!: 微分と逆三角関数 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: 微分と逆写像 · 続きを見る »

Δ

(デルタ、希: 、delta)は、ギリシア文字の第4字母。ラテンアルファベットのD、キリル文字のДはこの文字を起源とする。音価は古典では/d/、現代語では/ð/。.

新しい!!: 微分とΔ · 続きを見る »

Wolfram Alpha

Wolfram Alpha(WolframAlphaともWolfram|Alphaとも表記される)はウルフラム・リサーチが開発した質問応答システム。事実についての質問に対して、構造化されたデータを使って計算し、直接答えを返すオンラインサービスである。他の検索エンジンのように、答えを含んでいる可能性のあるドキュメントやウェブページのリストを返すわけではない。このサービスは2009年3月に英国人科学者スティーブン・ウルフラムが発表し、同年5月15日に公開された。また、2018年6月18日には日本語版のWolfram Alphaも公開された。現時点では日本語に対応しているのは数学関連のクエリのみであるが、「5個のボールの並べ方は何通りあるか」「ニュートン法を使ってx cos x.

新しい!!: 微分とWolfram Alpha · 続きを見る »

接ベクトル

数学において、接ベクトル(tangent vector)とは、曲線や曲面に接するようなベクトルのことである。.

新しい!!: 微分と接ベクトル · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: 微分と接ベクトル空間 · 続きを見る »

接線

初等幾何学において接する(せっする、tangent)とは、その名を「触れること」を意味するtangere に由来し、「ただ触れるだけ」という直観的概念を定式化するものである。特に、曲線の接線(せっせん、tangent line, tangent)は、平面曲線に対しては、曲線上の一点が与えられたとき、その点において曲線に「ただ触れるだけ」の直線を意味する。ライプニッツは接線を、曲線上の無限に近い二点を通る直線として定義した。より具体的に解析幾何学において、与えられた直線が曲線 の (あるいは曲線上の点 )における接線であるとは、その直線が曲線上の点 を通り、傾きが の微分係数 に等しいときに言う。同様の定義は空間曲線やより高次のユークリッド空間内の曲線に対しても適用できる。 曲線と接線が相接する点は接点 (point of tangency) と言い、曲線との接点において接線は曲線と「同じ方向へ」進む。その意味において接線は、接点における曲線の最適直線近似である。 同様に、曲面の接平面は、接点においてその曲線に「触れるだけ」の平面である。このような意味での「接する」という概念は微分幾何学において最も基礎となる概念であり、接空間として大いに一般化される。.

新しい!!: 微分と接線 · 続きを見る »

接束

微分幾何学において、可微分多様体 の接束(せっそく、tangent bundle, 接バンドル、タンジェントバンドル) は の接空間の非交和である。つまり、.

新しい!!: 微分と接束 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 微分と極限 · 続きを見る »

正則関数

複素解析において、正則関数(せいそくかんすう、regular analytic function)あるいは整型函数(せいけいかんすう、holomorphic function)とは、ガウス平面あるいはリーマン面上のある領域の全ての点で微分可能であるような複素変数のことである。.

新しい!!: 微分と正則関数 · 続きを見る »

滑らかな関数

数学において、関数の滑らかさ(なめらかさ、smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。.

新しい!!: 微分と滑らかな関数 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: 微分と指数関数 · 続きを見る »

有限差分

数学における有限差分(ゆうげんさぶん、finite difference)は なる形の式を総称して言う。有限差分を で割れば、差分商が得られる。微分を有限差分で近似することは、微分方程式(特に境界値問題)の数値的解法である有限差分法において中心的な役割を果たす。 ある種の漸化式は多項間の関係式を有限差分で置き換えて差分方程式にすることができる。 今日では「有限差分」の語は、特に数値解法の文脈において、微分の有限差分近似の同義語としてもよく用いられる。有限差分近似は冒頭の用語法に則れば有限差分商のことである。 有限差分それ自体も、抽象的な数学的対象として研究の主題となり得るものである。例えばジョージ・ブール (1860), (1933), (1939) らの業績があり、それはアイザック・ニュートンにまで遡れる。そのような観点で言えば、有限差分に関する形式的な計算は無限小に関する計算の代替となるものである。.

新しい!!: 微分と有限差分 · 続きを見る »

方向微分

数学において、多変数微分可能関数のある与えられた点 x におけるある与えられたベクトル v に沿った方向微分(ほうこうびぶん、)とは、直感的には、v によって特徴づけられた速度で x を通過する時の、その関数の即時的な変化率を意味する。したがって、他のすべての座標は定数として、ある一つのに沿った変化率を取るような、偏微分の概念を一般化するものである。 方向微分は、ガトー微分の特別な場合である。.

新しい!!: 微分と方向微分 · 続きを見る »

感度

感度(かんど)とは統計的な概念の一つ。分野によって定義が異なっているが、概ね「ある対象に与えた刺激とそれに対する応答の関係」に関わる指標である。.

新しい!!: 微分と感度 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 微分と数学 · 続きを見る »

数式

数式(すうしき、)は、数・演算記号・不定元などの数学的な文字・記号(および約物)が一定の規則にのっとって結合された、文字列である。 一般に数式には、その値 が定められており、数式はその値を表現すると考えられている。数式の値の評価 は、その数式に用いられる記号の定義あるいは値によって決まる。すなわち、数式はそれが現れる文脈に完全に依存した形で決まる。.

新しい!!: 微分と数式 · 続きを見る »

ここにリダイレクトされます:

F'(x)導函数導関数微分係数微分商

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »