ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

完全加法族と確率論

ショートカット: 違い類似点ジャカード類似性係数参考文献

完全加法族と確率論の違い

完全加法族 vs. 確率論

数学における完全加法族(かんぜんかほうぞく、completely additive class)、可算加法族(かさんかほうぞく、countably additive class)あるいは (σ-)加法族、σ-集合代数(シグマしゅうごうだいすう、σ-algebra)、σ-集合体(シグマしゅうごうたい、σ-field)接頭辞 "σ" は「可算加法的」("completely additive") であることを示すのにしばしば用いられる。また、完全加法族では可算加法性と可算乗法性が補集合を取る操作を通じて同値になるので区別されないが、(乗法族における)積の可算性が δ- を用いることによって表される場合がある(δ-乗法族)。例えば、σ-集合環と δ-集合環など。''G''δ-集合と''F''σ-集合の項も参照。は、主な用途として測度を定義することに十分な特定の性質を満たす集合の集まりである。特に測度が定義される集合全体を集めた集合族は完全加法族になる。この概念は、解析学ではルベーグ積分に対する基礎付けとして重要であり、また確率論では確率の定義できる事象全体の成す族として解釈される。完全加法族を接頭辞「完全」を付けずに単に「加法族」と呼ぶことも多い(つまり、有限加法族の意味ならば接頭辞「有限」を省略しないのがふつう)ので注意が必要である。. 率論(かくりつろん、,, )とは、偶然現象に対して数学的な模型(モデル)を与え、解析する数学の一分野である。 もともとサイコロ賭博といった賭博の研究として始まった。現在でも保険や投資などの分野で基礎論として使われる。 なお、確率の計算を問題とする分野を指して「確率論」と呼ぶ用例もあるが、本稿では取り扱わない。.

完全加法族と確率論間の類似点

完全加法族と確率論は(ユニオンペディアに)共通で9ものを持っています: 可測関数位相空間ルベーグ積分ボレル集合冪集合解析学標本空間測度論数学

可測関数

数学の、特に測度論の分野における可測関数(かそくかんすう、)とは、(積分論を展開する文脈として自然なものである)可測空間の間の、構造を保つ写像である。具体的に言えば、可測空間の間の関数が可測であるとは、各可測集合に対するその原像が可測であることを言う(これは位相空間の間の連続関数の定義の仕方と似ている)。 この定義は単純なようにも見えるが、σ-代数も併せて考えているということに特別な注意が払われなければならない。特に、関数 f: R → R がルベーグ可測であるといったとき、これは実際には f\colon (\mathbb, \mathcal) \to (\mathbb, \mathcal) が可測関数であることを意味する。すなわち、その定義域と値域は、同じ台集合上で異なる σ-代数を持つものを表している(ここで \mathcal はルベーグ可測集合全体の成す σ-代数であり、\mathcal は R 上のボレル集合族である)。結果として、ルベーグ可測関数の合成は必ずしもルベーグ可測とはならない。 慣例では、特に断りの無い限り、位相空間にはその開部分集合全体により生成されるボレル代数が与えられるものと仮定される。最もよくある場合だと、この空間として実数全体あるいは複素数全体からなる空間をとる。例えば、実数値可測関数とは、各ボレル集合の原像が可測となるような関数を言う。複素数値可測関数も同様に定義される。実用においては、ボレル集合族に関する実数値可測関数のみを指して可測関数という語を使用するものもある。関数の値が R や C の代わりに無限次元ベクトル空間に取られるのであれば、弱可測性やボホナー可測性などの、可測性に関する他の定義が用いられることが普通である。 確率論の分野において、σ-代数はしばしば、利用可能な情報すべてからなる集合を表し、ある関数(この文脈では確率変数)が可測であるとは、それが利用可能な情報に基づいて知ることの出来る結果(outcome)を表すことを意味する。対照的に、少なくとも解析学の分野においては、ルベーグ可測でない関数は一般に病的であると見なされる。.

可測関数と完全加法族 · 可測関数と確率論 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

位相空間と完全加法族 · 位相空間と確率論 · 続きを見る »

ルベーグ積分

数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、Lebesgue integral)は、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかしながら、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、局所コンパクト群のような、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 ルベーグ積分 (Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線の部分集合上定義された関数を積分するという特定の場合を意味することもある。.

ルベーグ積分と完全加法族 · ルベーグ積分と確率論 · 続きを見る »

ボレル集合

数学におけるボレル集合(ボレルしゅうごう、Borel set)は、位相空間の開集合系(あるいは閉集合系)から可算回の合併、交叉、差を取ることによって得られる集合の総称である。名称はエミール・ボレルに由来する。 位相空間 X に対し、X 上のボレル集合全体の成す族(ボレル集合族)は完全加法族(σ-集合体)を成し、ボレル集合体 あるいはボレル完全加法族 と呼ばれる。X 上のボレル集合体は、全ての開集合を含む最小の完全加法族である(全ての閉集合を含む最小の完全加法族でもある)。 ボレル集合は測度論において重要である。これは任意のボレル集合体上で定義された測度が空間内の開集合(あるいは閉集合)上での値のみから一意に定まることによる。ボレル集合体上で定義された測度はボレル測度と呼ばれる。ボレル集合およびそれに付随するボレル階層は、記述集合論においても基本的な役割を果たす。 文脈によっては、位相空間の(開集合ではなくて)コンパクト集合の生成するものとしてボレル集合を定めることもある。多くの素性の良い 空間、例えば任意の σ-コンパクトハウスドルフ空間などでは、この定義は先の(開集合を用いた)定義と同値になるが、そうでない病的な空間では違ってくる。.

ボレル集合と完全加法族 · ボレル集合と確率論 · 続きを見る »

冪集合

冪集合(べきしゅうごう、power set)とは、数学において、与えられた集合から、その部分集合の全体として新たに作り出される集合のことである。べきは冪乗の冪(べき)と同じもので、冪集合と書くのが正確だが、一部分をとった略字として巾集合とも書かれる。 集合と呼ぶべき対象を公理的に構成的に与える公理的集合論では、集合から作った冪集合が集合と呼ばれるべきもののうちにあることを公理の一つ(冪集合公理)としてしばしば提示する。.

冪集合と完全加法族 · 冪集合と確率論 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

完全加法族と解析学 · 確率論と解析学 · 続きを見る »

標本空間

率論における標本空間(ひょうほんくうかん、sample space)は (experiment, random trial) に付随して決まり、試行の取りうるすべての (outcome, result) からなる集合を言う。標本空間はふつう集合の記法に則り、取りうる順序付けられた結果はその集合の元として書き並べられる。標本空間を表すのに、S (Sample) や U (Universe) のような頭文字をとったり、 のような全体集合を表すのによく用いられる文字が使われる。 例えば、コイントスの試行では標本空間は典型的には であり、コインを二回投げる場合にはその標本空間は とするが、順番に関係なく二枚投げるならば標本空間は である。 六面ダイスを投げて上の面にある目の数を結果とする試行では、標本空間は とする。 きちんと定義された標本空間は、確率モデルを与える確率空間の三つの基本要素の一つであり、ほかの二つは可能なすべてのを表す完全加法族と各事象に割り当てられた確率を表す確率測度と呼ばれる線型汎函数である。.

完全加法族と標本空間 · 標本空間と確率論 · 続きを見る »

測度論

測度論(そくどろん、measure theory )は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。 ここで測度(そくど、measure )とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。 よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる。 また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、 確率論や統計学においても測度論は重要である。 たとえば「サイコロの目が偶数になる確率 」は目が 1,..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っている為、 測度の概念で記述できる。.

完全加法族と測度論 · 測度論と確率論 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

完全加法族と数学 · 数学と確率論 · 続きを見る »

上記のリストは以下の質問に答えます

完全加法族と確率論の間の比較

確率論が72を有している完全加法族は、47の関係を有しています。 彼らは一般的な9で持っているように、ジャカード指数は7.56%です = 9 / (47 + 72)。

参考文献

この記事では、完全加法族と確率論との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »