ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

孤立電子対

索引 孤立電子対

孤立電子対(こりつでんしつい、lone pair)とは、原子の最外殻の電子対のうち、共有結合に関与していない電子対のこと。それゆえ、非共有電子対(ひきょうゆうでんしつい、unshared electron pair)とも呼ばれる。 英語では、lone pairなので、「lp」と略すこともある。 量子力学的には、電子軌道はエネルギー準位の低いものから占有され、且つ一つの軌道にはスピンの異なる電子しか入ることができない。電子のスピンは+1/2と-1/2の二種類のみであるので対を成して軌道を占有することになる。分子軌道上にない電子はその原子のみに属するので、これを孤立電子対と呼ぶ。有機電子論では反応機構の要素として孤立電子対に独特の役割を想定していたが、量子論を中心とした現代の反応論では「共有結合に関与していない電子対」以上の意味はない。 孤立電子対の電子は金属やルイス酸性物質に配位することが可能であり、孤立電子対を持つ化合物は配位子やルイス塩基として働くことができる。.

18 関係: 原子塩基塩化水素不対電子不活性電子対効果フロンティア軌道理論分子軌道エネルギー準位スピン角運動量共有結合非結合性軌道錯体量子力学配位子配位結合電子配置有機電子論

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 孤立電子対と原子 · 続きを見る »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

新しい!!: 孤立電子対と塩基 · 続きを見る »

塩化水素

塩化水素(えんかすいそ、英: hydrogen chloride)は塩素と水素から成るハロゲン化水素。化学式 HCl。常温常圧で無色透明、刺激臭のある気体。有毒。塩酸ガスとも呼ばれる。.

新しい!!: 孤立電子対と塩化水素 · 続きを見る »

不対電子

一酸化窒素のN原子上には1つの不対電子がある。 不対電子(ふついでんし、unpaired electron)とは、分子や原子の最外殻軌道に位置する対になっておらず、電子対を作っていない電子のこと。共有結合を作る共有電子対や非共有電子対に比べ、化学的に不安定であり、反応性が高い。有機化学においては、不対電子を持つ、寿命の短いラジカルが反応経路を説明するのに重要な役割を果たしている。 電子は量子数によって決められる電子軌道を運動している。 s軌道やp軌道は、原子価を満たすようにsp3、sp2、spなどの混成軌道を形成するので、不対電子が現れることは少ない。これらの軌道ではラジカルは二量化し、電子が非局在化して安定化する。対照的に、d軌道やf軌道において、不対電子はよく見られる。これは、1つの電子軌道に入ることができる電子の数が多く、結合が弱くなるためである。またこれらの軌道においては、が比較的小さく、二量体にはなりにくい。 たとえば原子番号8の酸素は8個の電子を持つ。1s、2s軌道に各2個、2p軌道には4個の電子が配置される。2p軌道には1個あるいはスピンの向きが反対の2個の電子を入れることのできる軌道が3組あるので、酸素原子の最外殻には1組(2s軌道の2個を除いて)の対になった電子と、対になっていない2個の電子が存在することになる。 酸素分子は酸素原子2個からなるが、酸素分子の分子軌道では、2p軌道の計8個の電子は、もともと対になっている4個(2組)と、共有され対になった2個と、対になっていない2個という配置になる。 また一酸化窒素も不対電子をもつ物質の一つである。 対になっていない電子があることが磁性の特性をきめる。.

新しい!!: 孤立電子対と不対電子 · 続きを見る »

不活性電子対効果

不活性電子対効果(ふかっせいでんしついこうか、inert-pair effect)とは、広義には第四周期以降の、狭義には第六周期の第13族元素~第17族元素において原子価殻のs軌道にある電子が化学的に不活性に見える現象を指す。 この言葉は1927年にネヴィル・ヴィンセント・シドウィックによってはじめて用いられた。 第四周期以降の第13族元素~第17族元素では族によって決まる最高酸化数よりも2少ない酸化数の化合物が安定になる傾向がしばしば見られる。 例えば第四周期においては、ヒ素のハロゲン化物は5価よりも3価をとる傾向があり、セレンの酸化物や酸素酸は6価よりも4価の方が安定であり、臭素では臭素酸から過臭素酸への酸化が非常に困難である、といった現象が知られている。 第五周期では、インジウム、スズ、アンチモンの塩化物はそれぞれ最高酸化数とそれよりも2少ない酸化数の化合物が両方とも知られている。 第六周期になると、タリウム、鉛、ビスマスにおいては、むしろ最高酸化数の化学種がむしろ不安定であり、それよりも2つ小さい酸化数が安定であることが知られている。 この原因として原子価殻のs軌道への核電荷の遮蔽が弱いため、電子雲が原子核近傍に引き寄せられエネルギー的に安定となり価電子としてふるまわないという仮説が唱えられた。 そのため、この現象を不活性電子対効果という。 しかしそれぞれの元素のs電子のイオン化エネルギー(最高酸化数のイオンを形成するためのエネルギー)と最高酸化数の化合物の安定性には必ずしも相関がないことが分かっている。 例えば15族の5価の陽イオンを形成するイオン化エネルギーの総計はヒ素>アンチモン>ビスマスの順であり、これらの中では5価の化合物が安定なのはアンチモンであるという事実に反する。 そのため、この不活性電子対効果は単純にs軌道のエネルギー準位が低いために起こっているわけではないと考えられている。 また不活性電子対を持つとされる塩化スズ(II)において、本当にs軌道が結合に関与していないのであれば分子の形は直線形(結合角180度)になるのが最安定配座である。 しかし実際の塩化スズ(II)の気体の分子構造は折れ曲がった構造(結合角95度)をとり、s電子が結合に関与していることを示唆している。 このような現象はs電子対が立体化学的に活性であると称される。 よって実際のところは不活性電子対効果の名に反して、とされる。 一方、14族元素のハロゲン化物の気相での結合エネルギーの測定結果は明らかに化合物の安定性と相関を示す。 すなわち、最高酸化数の化学種の結合エネルギーが小さくなることがこの効果の真の原因とされる。 結合エネルギーが小さくなる原因については議論があるが、一例として第四周期と第六周期の元素では電気陰性度が大きいため(これも核電荷の遮蔽が弱いことに起因する)、として挙げられている。.

新しい!!: 孤立電子対と不活性電子対効果 · 続きを見る »

フロンティア軌道理論

フロンティア軌道理論(フロンティアきどうりろん、)あるいはフロンティア電子理論(フロンティアでんしりろん)とは、フロンティア軌道と呼ばれる軌道の密度や位相によって、分子の反応性が支配されていることを主張する理論。福井謙一によって提唱された。この業績に対し、1981年にロアルド・ホフマンとともにノーベル化学賞が与えられた。ウッドワード・ホフマン則はフロンティア軌道理論よりも後に発表されている。.

新しい!!: 孤立電子対とフロンティア軌道理論 · 続きを見る »

分子軌道

アセチレン (H–C≡C–H) の完全な分子軌道群。左欄は基底状態で占有されているMOを示し、最上部が最もエネルギーの低い軌道である。1部のMOで見られる白色と灰色の線はアセチレン分子の球棒モデルによる表示である。オービタル波動関数は赤色の領域で正、青色の領域で負である。右欄は基底状態では空のMOを示しているが、励起状態ではこれらの軌道は占有され得る。 ベンゼンの最低空軌道 分子軌道(ぶんしきどう、molecular orbital、略称MO)は分子中の各電子の空間分布を記述する一電子波動関数のことである。分子軌道法において中心的な役割を果たし、電子に対するシュレーディンガー方程式を、一電子近似を用いて解くことによって得られる。 1個の電子の位置ベクトル \boldsymbol の関数であり、 \phi_i(\boldsymbol) と表される。一般に複素数である。原子に対する原子軌道に対応するものである。 この関数は、特定の領域に電子を見い出す確率といった化学的、物理学的性質を計算するために使うことができる。「オービタル」(orbital)という用語は、「one-electron orbital wave function: 1電子オービタル(軌道〔orbit〕のような)波動関数」の略称として1932年にロバート・マリケンによって導入された。初歩レベルでは、分子軌道は関数が顕著な振幅を持つ空間の「領域」を描写するために使われる。分子軌道は大抵、分子のそれぞれの原子の原子軌道あるいは混成軌道や原子群の分子軌道を結合させて構築される。分子軌道はハートリー-フォック法や自己無撞着場(SCF)法を用いて定量的に計算することができる。.

新しい!!: 孤立電子対と分子軌道 · 続きを見る »

エネルギー準位

ネルギー準位(エネルギーじゅんい、)とは、系のエネルギーの測定値としてあり得る値、つまりその系のハミルトニアンの固有値E_1,E_2,\cdotsを並べたものである。 それぞれのエネルギー準位は、量子数や項記号などで区別される.

新しい!!: 孤立電子対とエネルギー準位 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: 孤立電子対とスピン角運動量 · 続きを見る »

共有結合

H2(右)を形成している共有結合。2つの水素原子が2つの電子を共有している。 共有結合(きょうゆうけつごう、covalent bond)は、原子間での電子対の共有をともなう化学結合である。結合は非常に強い。ほとんどの分子は共有結合によって形成される。また、共有結合によって形成される結晶が共有結合結晶である。配位結合も共有結合の一種である。 この結合は非金属元素間で生じる場合が多いが、金属錯体中の配位結合の場合など例外もある。 共有結合はσ結合性、π結合性、金属-金属結合性、アゴスティック相互作用、曲がった結合、三中心二電子結合を含む多くの種類の相互作用を含む。英語のcovalent bondという用語は1939年に遡る。接頭辞のco- は「共同」「共通」などを意味する。ゆえに、「co-valent bond」は本質的に、原子価結合法において議論されているような「原子価」(valence)を原子が共有していることを意味する。 分子中で、水素原子は共有結合を介して2つの電子を共有している。共有結合性は似た電気陰性度の原子間で最大となる。ゆえに、共有結合は必ずしも同種元素の原子の間だけに生じるわけではなく、電気陰性度が同程度であればよい。3つ以上の原子にわたる電子の共有を伴う共有結合は非局在化している、と言われる。.

新しい!!: 孤立電子対と共有結合 · 続きを見る »

非結合性軌道

非結合性軌道(ひけつごうせいきどう、non-bonding orbital)は、電子による占有が、関与する原子間の結合次数を増加も減少もさせない分子軌道である。非結合性軌道は分子軌道ダイアグラムおよび電子遷移表記法においてしばしば文字nで表される。分子軌道法における非結合性軌道はルイス構造における孤立電子対に相当する。非結合性軌道のエネルギー準位は典型的には、より低いエネルギーの原子価殻結合性軌道とそれに対応するより高いエネルギーの反結合性軌道との間にある。そのため、電子によって占有された非結合性軌道は通常はHOMO(最高被占分子軌道)となる。 分子軌道法では、分子軌道は原子軌道の線形結合から形成される。フッ化水素(HF)といった単純な二原子分子において、ある原子はその他の原子よりもより多くの電子を持ちうる。HFではσ結合性軌道は同じ対称性を持つ水素の1s軌道とフッ素の2pz軌道の線型結合により作られる。残ったフッ素の2pxおよび2py軌道は変化していないが、分子軌道として見た時には非結合性軌道となる。これらの非結合性軌道のエネルギーは分子内のいかなる結合の長さにも依存しない。これらの軌道が電子によって占有されても分子の安定性を上昇も低下もさせない。 非結合性軌道は構成原子の原子軌道としばしば似ているが、それらが似ている必要はない。似ていない一例はアリルアニオンの非結合性軌道である。アリルアニオンのHOMOは両端の原子の2px軌道(分子平面に対して垂直)が逆の位相で合わさったものであるため(中央の原子は節でありこの分子軌道には関与しない)、両端の原子軌道はほぼ重なり合わず、そのエネルギーは個々の2px軌道のエネルギーと同じと見なせる。.

新しい!!: 孤立電子対と非結合性軌道 · 続きを見る »

錯体

錯体(さくたい、英語:complex)もしくは錯塩(さくえん、英語:complex salt)とは、広義には、配位結合や水素結合によって形成された分子の総称である。狭義には、金属と非金属の原子が結合した構造を持つ化合物(金属錯体)を指す。この非金属原子は配位子である。ヘモグロビンやクロロフィルなど生理的に重要な金属キレート化合物も錯体である。また、中心金属の酸化数と配位子の電荷が打ち消しあっていないイオン性の錯体は錯イオンと呼ばれよ 金属錯体は、有機化合物・無機化合物のどちらとも異なる多くの特徴的性質を示すため、現在でも非常に盛んな研究が行われている物質群である。.

新しい!!: 孤立電子対と錯体 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 孤立電子対と量子力学 · 続きを見る »

配位子

配位子(はいいし、リガンド、ligand)とは、金属に配位する化合物をいう。.

新しい!!: 孤立電子対と配位子 · 続きを見る »

配位結合

配位結合(はいいけつごう、Coordinate bond)とは、結合を形成する二つの原子の一方からのみ結合電子が分子軌道に提供される化学結合である。 見方を変えると、電子対供与体となる原子から電子対受容体となる原子へと、電子対が供給されてできる化学結合であるから、ルイス酸とルイス塩基との結合でもある。したがって、プロトン化で生成するオキソニウムイオン(より正確にはオニウムイオン)は配位結合により形成される。 またオクテット則を満たさない第13族元素の共有結合化合物は、強いルイス酸であり配位結合により錯体を形成する。 あるいは遷移金属元素の多くは共有結合に利用される価電子の他に空のd軌道などを持つ為、多くの種類の金属錯体が配位結合により形成される。.

新しい!!: 孤立電子対と配位結合 · 続きを見る »

電子配置

電子配置(でんしはいち、)とは、多電子系である原子や分子の電子状態が「一体近似で得られる原子軌道あるいは分子軌道に複数の電子が詰まった状態」として近似的に表すことができると考えた場合に、電子がどのような軌道に配置しているのか示したもので、これによって各元素固有の性質が決定される。.

新しい!!: 孤立電子対と電子配置 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 孤立電子対と水 · 続きを見る »

有機電子論

有機電子論(ゆうきでんしろん、electronic theory of organic chemistry)とは化学結合の性質および反応機構を、電荷の静電相互作用と原子を構成する価電子とにより説明する理論である。有機化学の領域では単に電子論と呼ばれる。.

新しい!!: 孤立電子対と有機電子論 · 続きを見る »

ここにリダイレクトされます:

非共有電子対

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »