ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

太陽系と太陽系外惑星

ショートカット: 違い類似点ジャカード類似性係数参考文献

太陽系と太陽系外惑星の違い

太陽系 vs. 太陽系外惑星

太陽系(たいようけい、この世に「太陽系」はひとつしかないので、固有名詞的な扱いをされ、その場合、英語では名詞それぞれを大文字にする。、ラテン語:systema solare シュステーマ・ソーラーレ)とは、太陽および、その重力で周囲を直接的、あるいは間接的に公転する天体惑星を公転する衛星は、後者に当てはまるから構成される構造である。主に、現在確認されている8個の惑星歴史上では、1930年に発見された冥王星などの天体が惑星に分類されていた事もあった。惑星の定義も参照。、5個の準惑星、それを公転する衛星、そして多数の太陽系小天体などから成るニュートン (別2009)、1章 太陽系とは、pp.18-19 太陽のまわりには八つの惑星が存在する。間接的に太陽を公転している天体のうち衛星2つは、惑星では最も小さい水星よりも大きい太陽と惑星以外で、水星よりも大きいのは木星の衛星ガニメデと土星の衛星タイタンである。。 太陽系は約46億年前、星間分子雲の重力崩壊によって形成されたとされている。総質量のうち、ほとんどは太陽が占めており、残りの質量も大部分は木星が占めている。内側を公転している小型な水星、金星、地球、火星は、主に岩石から成る地球型惑星(岩石惑星)で、木星と土星は、主に水素とヘリウムから成る木星型惑星(巨大ガス惑星)で、天王星と海王星は、メタンやアンモニア、氷などの揮発性物質といった、水素やヘリウムよりも融点の高い物質から成る天王星型惑星(巨大氷惑星)である。8個の惑星はほぼ同一平面上にあり、この平面を黄道面と呼ぶ。 他にも、太陽系には多数の小天体を含んでいる。火星と木星の間にある小惑星帯は、地球型惑星と同様に岩石や金属などから構成されている小天体が多い。それに対して、海王星の軌道の外側に広がる、主に氷から成る太陽系外縁天体が密集している、エッジワース・カイパーベルトや散乱円盤天体がある。そして、そのさらに外側にはと呼ばれる、新たな小惑星の集団も発見されてきている。これらの小天体のうち、数十個から数千個は自身の重力で、球体の形状をしているものもある。そのような天体は準惑星に分類される事がある。現在、準惑星には小惑星帯のケレスと、太陽系外縁天体の冥王星、ハウメア、マケマケ、エリスが分類されている。これらの2つの分類以外にも、彗星、ケンタウルス族、惑星間塵など、様々な小天体が太陽系内を往来している。惑星のうち6個が、準惑星では4個が自然に形成された衛星を持っており、慣用的に「月」と表現される事がある8つの惑星と5つの準惑星の自然衛星の一覧については太陽系の衛星の一覧を参照。。木星以遠の惑星には、周囲を公転する小天体から成る環を持っている。 太陽から外部に向かって放出されている太陽風は、太陽圏(ヘリオスフィア)と呼ばれる、星間物質中に泡状の構造を形成している。境界であるヘリオポーズでは太陽風による圧力と星間物質による圧力が釣り合っている。長周期彗星の源と考えられているオールトの雲は太陽圏の1,000倍離れた位置にあるとされている。銀河系(天の川銀河)の中心から約26,000光年離れており、オリオン腕に位置している。. 太陽系外惑星(たいようけいがいわくせい、Extrasolar planet, Exoplanet)とは、太陽系にとっての系外惑星、つまり、太陽系の外にある惑星である。 多くは(太陽以外の)恒星の周りを公転するが、白色矮星や中性子星(パルサー)、褐色矮星などを回るものも見つかっており、他にもさまざまな星を回るものが想定される。自由浮遊惑星(いかなる天体も回らない惑星大の天体)を惑星に含めるかどうかは議論があるが、発見法が異なることなどから、系外惑星についての話題の中では自由浮遊惑星は別扱いすることが多い。 観測能力の限界から実際に発見されずにきたが、1990年代以降、多くの系外惑星が実際に発見されている。 ドップラー法.

太陽系と太陽系外惑星間の類似点

太陽系と太陽系外惑星は(ユニオンペディアに)共通で56ものを持っています: 原始惑星系円盤おうし座こと座天動説天王星型惑星天文単位太陽太陽質量小惑星主系列星仮説上の天体彗星土星地動説地球地球型惑星マサチューセッツ工科大学ハビタブルゾーンバーナード星ヘリウムヘルクレス座プロキシマ・ケンタウリbホット・ジュピターアメリカ合衆国アメリカ航空宇宙局イオ (衛星)ウィリアム・ハーシェルエリダヌス座イプシロン星エキセントリック・プラネットケプラーの法則...スーパー・アースサイエンス冥王星公転国立天文台国際天文学連合環 (天体)炭素白色矮星褐色矮星赤色矮星重力重力崩壊自由浮遊惑星酸素連星恒星欧州宇宙機関水素潮汐力木星木星型惑星惑星海王星17世紀 インデックスを展開 (26 もっと) »

原始惑星系円盤

原始惑星系円盤(げんしわくせいけいえんばん、protoplanetary disk)は新しく生まれた恒星(おうし座T型星)の周囲を取り巻く濃いガスが回転している円盤である。英語では proplyd という略称で呼ばれる場合もある。原始惑星系円盤のガス物質は円盤の内側の境界から中心星の表面に向かって落ち込んでいるため、この円盤は一種の降着円盤であると見ることもできる。(この降着過程は円盤内部で物質が集積して惑星が作られる過程とは別である。) おうし座T型星を取り巻く原始惑星系円盤は、近接連星系の周囲に存在する円盤とは大きさや温度の点で異なっている。原始惑星系円盤の半径は約1,000天文単位までで、連星系の円盤に比べて低温である。その温度は円盤の最も内側でようやく1,000Kを越える程度である。原始惑星系円盤には多くの場合ジェットが付随している。 典型的な原始星は水素分子を主成分とする分子雲から生まれる。分子雲の一部で大きさ・質量・密度などがある上限値に達すると、その雲の塊は自己重力によって収縮を始める。このような収縮しつつあるガス雲は原始太陽系星雲 (solar nebula) と呼ばれ、収縮によって密度が次第に高くなる。この収縮過程でガス雲が元々持っていたガスの乱雑運動は均される一方で、ガス雲の全角運動量は角運動量保存則によって不変なため、原始太陽系星雲が収縮して小さくなるにつれて星雲全体がある回転軸の周りに自転するようになる。この自転によって(生地を回転させることで平たいピザができるのと同様に)ガス雲は扁平になり、円盤状の形状を持つようになる。この最初の収縮過程は約10万年続く。この収縮が終わる頃には中心星の表面温度は同じ質量を持つ主系列星と同程度にまで上昇し、光を放射して外部から見えるようになる。この段階に達した星はおうし座T型星と呼ばれる。その後、円盤から中心星へのガスの降着が約1,000万年続いた後、円盤は外部から見えなくなる。円盤が観測されなくなる原因は、中心星の恒星風によって吹き飛ばされるか、あるいは単に質量降着が終わって円盤が光を放射しなくなるためだと考えられている。これまでに発見されている原始惑星系円盤で最も年齢が古いものは約2,500万年である。 太陽系の形成を説明する星雲説では原始惑星系円盤がどのようにして惑星系へと進化するかを次のように説明している。原始惑星系円盤の内部では、塵や氷の微粒子が静電気力や重力相互作用によって集積し、微惑星が作られる。この集積過程は、円盤のガスを系の外に四散させようとする中心のおうし座T型星からの恒星風や、円盤の物質を中心星に落とし込もうとする降着過程との競争となる。 我々の銀河系の中では、いくつかの若い星の周囲で原始惑星系円盤が観測されている。このような原始惑星系円盤は1984年にがか座β星で最初に発見された。最近のハッブル宇宙望遠鏡による観測で、オリオン大星雲の中に多くの原始惑星系円盤が見つかっている。 また太陽に近い明るい恒星の中でも、こと座のベガやかんむり座α星、みなみのうお座のフォーマルハウトなどでガスや塵からなる大きな円盤が恒星を取り巻いているのが発見され、当初は原始惑星系円盤ではないかと考えられた。これらのうち、ベガとフォーマルハウトはカストル運動星群 (Castor co-moving group) と呼ばれるほぼ同じ空間運動をしている恒星で、かつては同じ星間雲から生まれたと考えられている。最近のヒッパルコス衛星による観測で、この運動星群の年齢は約2±1億年と見積もられている。このことから、ベガとフォーマルハウトに見られる赤外線放射の超過は原始惑星系円盤というよりは、微惑星同士の衝突の過程で弾き飛ばされた小天体からなる円盤という解釈が妥当であると現在では考えられている。この説はハッブル宇宙望遠鏡によるフォーマルハウトの円盤の観測によっても裏付けられている。.

原始惑星系円盤と太陽系 · 原始惑星系円盤と太陽系外惑星 · 続きを見る »

おうし座

おうし座(牡牛座、Taurus)は、黄道十二星座の1つ。トレミーの48星座の1つでもある。 α星は、全天21の1等星の1つであり、アルデバランと呼ばれる。 この星座には、プレアデス星団をはじめ有名な天体が多い。.

おうし座と太陽系 · おうし座と太陽系外惑星 · 続きを見る »

こと座

こと座(ことざ、琴座、ラテン語:Lyra)は、トレミーの48星座の1つ。北天の星座で、比較的小さい星座である。 α星は、全天21の1等星の1つであり、ベガ(七夕のおりひめ星、織女星)と呼ばれる。ベガと、はくちょう座α星のデネブ、わし座α星のアルタイル(七夕のひこ星、牽牛星)の3つの1等星で、夏の大三角と呼ばれる大きな二等辺三角形を形成する。 都会など空の条件のよくないところでは、明るいベガしか見えないが、そのすぐ近くに3-4等星が平行四辺形に並んでいるため、空の環境が良ければ比較的見つけやすい星座である。.

こと座と太陽系 · こと座と太陽系外惑星 · 続きを見る »

天動説

天動説の図 天動説(てんどうせつ)、または地球中心説(Geocentrism)とは、地球は宇宙の中心にあり静止しており、全ての天体が地球の周りを公転しているとする説で、コスモロジー(宇宙論)の1つの類型のこと。大別して、エウドクソスが考案してアリストテレスの哲学体系にとりこまれた同心天球仮説と、プトレマイオスの天動説の2種がある。単に天動説と言う場合、後発で最終的に体系を完成させたプトレマイオスの天動説のことを指すことが多い。現在では間違いとされる。.

天動説と太陽系 · 天動説と太陽系外惑星 · 続きを見る »

天王星型惑星

天王星型惑星(てんのうせいがたわくせい)とは、メタン、アンモニアを含む氷や液体の水を主体とした巨大な惑星のこと。太陽系では土星より外側にある天王星・海王星がこれにあてはまる。.

天王星型惑星と太陽系 · 天王星型惑星と太陽系外惑星 · 続きを見る »

天文単位

天文単位(てんもんたんい、astronomical unit、記号: au)は長さの単位で、正確に である。2014年3月に「国際単位系 (SI) 単位と併用される非 SI 単位」(SI併用単位)に位置づけられた。それ以前は、SIとの併用が認められている単位(SI単位で表される、数値が実験的に得られるもの)であった。主として天文学で用いられる。.

天文単位と太陽系 · 天文単位と太陽系外惑星 · 続きを見る »

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。.

太陽と太陽系 · 太陽と太陽系外惑星 · 続きを見る »

太陽質量

太陽質量(たいようしつりょう、Solar mass)は、天文学で用いられる質量の単位であり、また我々の太陽系の太陽の質量を示す天文定数である。 単位としての太陽質量は、惑星など太陽系の天体の運動を記述する天体暦で用いられる天文単位系における質量の単位である。 また恒星、銀河などの天体の質量を表す単位としても用いられている。.

太陽系と太陽質量 · 太陽系外惑星と太陽質量 · 続きを見る »

小惑星

光分(左)と天文単位(右)。 ケレス(右)、そして火星(下)。小さな物ほど不規則な形状になっている。 メインベルト小惑星の分布。縦軸は軌道傾斜角。 軌道長半径 6 AU までの小惑星の分布。縦軸は軌道傾斜角。赤い点はメインベルト小惑星。 小惑星(しょうわくせい、独: 英: Asteroid)は、太陽系小天体のうち、星像に拡散成分がないものの総称。拡散成分(コマやそこから流出した尾)があるものは彗星と呼ばれる。.

太陽系と小惑星 · 太陽系外惑星と小惑星 · 続きを見る »

主系列星

主系列星(しゅけいれつせい、main sequence star)とは、ヘルツシュプルング・ラッセル図(HR図)上で、左上(明るく高温)から図の右下(暗く低温)に延びる線である主系列 (Main Sequence) に位置する恒星をいう。矮星ともいう。.

主系列星と太陽系 · 主系列星と太陽系外惑星 · 続きを見る »

仮説上の天体

仮説上の天体(かせつじょうのてんたい)では、学問上の仮説として存在が提唱され、後に存在が否定されたか、存在が確認されていない天体について記述する。 インド占星術など、科学ではないが占星術や神秘学などでの仮説上の惑星についてもこの項目で解説している。 フィクション作品に登場する架空の天体については架空の惑星一覧を参照のこと。.

仮説上の天体と太陽系 · 仮説上の天体と太陽系外惑星 · 続きを見る »

彗星

アメリカ合衆国アリゾナ州のカタリナ天文台で1974年11月1日に撮影されたコホーテク彗星 クロアチアのパジンで1997年3月29日に撮影されたヘール・ボップ彗星 彗星(すいせい、comet)は、太陽系小天体のうち主に氷や塵などでできており、太陽に近づいて一時的な大気であるコマや、コマの物質が流出した尾(テイル)を生じるものを指す。.

太陽系と彗星 · 太陽系外惑星と彗星 · 続きを見る »

土星

土星(どせい、、、)は、太陽から6番目の、太陽系の中では木星に次いで2番目に大きな惑星である。巨大ガス惑星に属する土星の平均半径は地球の約9倍に当る。平均密度は地球の1/8に過ぎないため、巨大な体積の割りに質量は地球の95倍程度である。そのため、木星型惑星の一種とされている。 土星の内部には鉄やニッケルおよびシリコンと酸素の化合物である岩石から成る中心核があり、そのまわりを金属水素が厚く覆っていると考えられ、中間層には液体の水素とヘリウムが、その外側はガスが取り巻いている。 惑星表面は、最上部にあるアンモニアの結晶に由来する白や黄色の縞が見られる。金属水素層で生じる電流が作り出す土星の固有磁場は地球磁場よりも若干弱く、木星磁場の1/12程度である。外側の大気は変化が少なく色彩の差異も無いが、長く持続する特徴が現れる事もある。風速は木星を上回る1800km/hに達するが、海王星程ではない。 土星は恒常的な環を持ち、9つが主要なリング状、3つが不定的な円弧である。これらはほとんどが氷の小片であり、岩石のデブリや宇宙塵も含まれる。知られている限り62個の衛星を持ち、うち53個には固有名詞がついている。これにはリングの中に存在する何百という小衛星(ムーンレット)は含まれない。タイタンは土星最大で太陽系全体でも2番目に大きな衛星であり、水星よりも大きく、衛星としては太陽系でただひとつ有意な大気を纏っている。 日本語で当該太陽系第六惑星を「土星」と呼ぶ由来は、古代中国において五惑星が五行説に当てはめて考えられた際、この星に土徳が配当されたからである。英語名サターンはローマ神話の農耕神サートゥルヌスに由来する。.

土星と太陽系 · 土星と太陽系外惑星 · 続きを見る »

地動説

地動説(ちどうせつ)とは、宇宙の中心は太陽であり、地球は他の惑星と共に太陽の周りを自転しながら公転している、という学説のこと。宇宙の中心は地球であるとする天動説(地球中心説)に対義する学説であり、ニコラウス・コペルニクスが唱えた。彼以前にも太陽を宇宙の中心とする説はあった。太陽中心説(Heliocentrism)ともいうが、地球が動いているかどうかと、太陽と地球どちらが宇宙の中心であるかは厳密には異なる概念であり、地動説は「Heliocentrism」の訳語として不適切だとの指摘もある。聖書の解釈と地球が動くかどうかという問題は関係していたが、地球中心説がカトリックの教義であったことはなかった。地動説(太陽中心説)確立の過程は、宗教家(キリスト教)に対する科学者の勇壮な闘争というモデルで語られることが多いが、これは19世紀以降に作られたストーリーであり、事実とは異なる。 地動説の図.

地動説と太陽系 · 地動説と太陽系外惑星 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

地球と太陽系 · 地球と太陽系外惑星 · 続きを見る »

地球型惑星

地球型惑星(ちきゅうがたわくせい、英語: terrestrial planet, telluric planet)とは、主に岩石や金属などの難揮発性物質から構成される惑星である。岩石惑星(英語: rocky planet)、固体惑星ともいい、太陽系では水星・金星・地球・火星の4惑星がこれにあたる。太陽系のうち、これらの惑星が位置する領域を内太陽系と呼称する場合がある。木星型惑星・天王星型惑星と比べ、質量が小さく密度が大きい。 惑星科学の観点からは月も性質上「地球型惑星」の一種として考えられることが多いという。しかし惑星の定義としては衛星が明確に除外されており、「惑星」の分類としての「地球型惑星」を言う場合、月については触れないのが普通である。.

地球型惑星と太陽系 · 地球型惑星と太陽系外惑星 · 続きを見る »

マサチューセッツ工科大学

マサチューセッツ工科大学(英語: Massachusetts Institute of Technology)は、アメリカ合衆国マサチューセッツ州ケンブリッジに本部を置く私立工科大学である。1865年に設置された。通称はMIT(エム・アイ・ティー。「ミット」は誤用で主に日本、欧州の極めて一部で用いられる)。 全米屈指のエリート名門校の1つとされ、ノーベル賞受賞者を多数(2014年までの間に1年以上在籍しMITが公式発表したノーベル賞受賞者は81名で、この数はハーバード大学の公式発表受賞者48名を上回る)輩出している。最も古く権威ある世界大学評価機関の英国Quacquarelli Symonds(QS)による世界大学ランキングでは、2012年以来2017年まで、ハーバード大学及びケンブリッジ大学を抑えて6年連続で世界第一位である。 同じくケンブリッジ市にあるハーバード大学とはライバル校であるが、学生達がそれぞれの学校の授業を卒業単位に組み込める単位互換制度(Cross-registration system)が確立されている。このため、ケンブリッジ市は「世界最高の学びのテーマパーク」とさえも称されている。物理学や生物学などの共同研究組織を立ち上げるなど、ハーバード大学との共同研究も盛んである。 MITはランドグラント大学でもある。1865年から1900年の間に約19万4千ドル(これは2008年時点の生活水準でいうところの380万ドルに相当)のグラントを得、また同時期にマサチューセッツ州から更なる約36万ドル(2008年時点の生活水準で換算して700万ドルに相当)の資金を獲得しているD.

マサチューセッツ工科大学と太陽系 · マサチューセッツ工科大学と太陽系外惑星 · 続きを見る »

ハビタブルゾーン

ハビタブルゾーン(HZ: habitable zone)とは、宇宙の中で生命が誕生するのに適した環境と考えられている天文学上の領域。ゴルディロックスゾーン (GZ: Goldilocks zone) とも呼ばれる。日本語では「生命居住可能領域」と呼ばれる。現在も多様な生物が存在する地球と比較して、その地球環境と類似する環境範囲内にあれば、人類の移住、生命の発生やその後の進化も容易なのではとの仮説に基づく宇宙空間領域を指す。ここで考慮される環境とは、主に他天体から放射されるエネルギー量や星間物質の量などである。天文学者により「惑星系のハビタブルゾーン ('''CHZ''': circumstellar habitable zone)」や「銀河系のハビタブルゾーン (GHZ: galactic habitable zone)」などが考えられている。 このような領域内に惑星があれば、それをハビタブル惑星 (Habitable planet)、またその中でも特に地球とサイズ等が近い惑星はゴルディロックス惑星 (Goldilocks planet)などと呼ばれている。.

ハビタブルゾーンと太陽系 · ハビタブルゾーンと太陽系外惑星 · 続きを見る »

バーナード星

バーナード星 (Barnard's star) とは、太陽系から約6光年の距離に位置する恒星である。 1916年にアメリカの天文学者であるエドワード・エマーソン・バーナードにより発見された。ケンタウルス座α星系に次いで、2番目に太陽系に近い恒星系である。.

バーナード星と太陽系 · バーナード星と太陽系外惑星 · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

ヘリウムと太陽系 · ヘリウムと太陽系外惑星 · 続きを見る »

ヘルクレス座

ヘルクレス座(Hercules)は、トレミーの48星座の1つ。ヘルクレス座は、全天で5番目に大きい星座である。あまり明るい星はない。ギリシア神話に登場する勇者ヘーラクレースにちなむが、日本語での正式な星座名は「ヘルクレス座」である。.

ヘルクレス座と太陽系 · ヘルクレス座と太陽系外惑星 · 続きを見る »

プロキシマ・ケンタウリb

プロキシマ・ケンタウリb (Proxima Centauri b)、またはプロキシマb (Proxima b) は、太陽に最も近い恒星である赤色矮星プロキシマ・ケンタウリのハビタブルゾーンに存在すると考えられている太陽系外惑星である。地球からの距離は約4.2光年(1.3パーセク、40兆km)、ケンタウルス座の方角に位置しており、2016年現在知られている太陽系外惑星の中では最も太陽系に近い天体である。生命が存在する可能性から注目を集めているが、サイズが近い他の太陽系外惑星と比べて特別条件が良いわけではない。 ただし、正確な評価のためには惑星の物理的特性に関するより多くの情報が必要である。 プロキシマ・ケンタウリbの発見は、2016年8月にヨーロッパ南天天文台によりアナウンスされた。惑星の発見には主星のスペクトル線の周期的なドップラーシフトから惑星の存在を探る視線速度法が用いられた。主星の視線速度は、毎秒約2mほどである。 プロキシマ・ケンタウリbは地球に極めて近いことから、数世紀以内という太陽系外惑星としては比較的現実的な期間で探査が可能であり、研究者らによりブレークスルー・スターショット計画といった無人探査が提案されている。.

プロキシマ・ケンタウリbと太陽系 · プロキシマ・ケンタウリbと太陽系外惑星 · 続きを見る »

ホット・ジュピター

ホット・ジュピターの想像図 ホット・ジュピターの一つ、HD 188753 bの想像図 ホット・ジュピター() は、木星ほどの質量を持ちながら、主星の恒星から、わずか0.015au(224万km)から0.5au(7480万km)しか離れておらず、表面温度が非常に高温になっている太陽系外惑星の分類の一つである。roaster planets、epistellar jovians、pegasidsとも呼ばれる。恒星に極めて近く、強烈な恒星光を浴びるため表面温度は高温になっていると予想されている。「ホット・ジュピター」は直訳すれば「熱い木星」となるが、このような特徴に由来したものである。この種の系外惑星は1995年頃から続々と発見されつつある。 主星の近くを高速で公転しているため、質量が大きい惑星の重力によって生じる主星のわずかな揺れを検出するドップラー分光法での発見が最も簡単なタイプである。最もよく知られているホット・ジュピターはペガスス座51番星bである。ペガスス座51番星は、太陽に似た恒星を、わずか4日間で公転しており、1995年に発見された。 他にも、離心率の大きい彗星のような楕円軌道を描き、灼熱期と極寒期をめまぐるしく繰り返す巨大惑星エキセントリック・プラネットも発見されている。両者はこれまでに発見された太陽系外惑星のうち大半を占めているが、後者の方が圧倒的に多い。いずれも、我々の太陽系の惑星からは想像もつかない惑星である。.

ホット・ジュピターと太陽系 · ホット・ジュピターと太陽系外惑星 · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

アメリカ合衆国と太陽系 · アメリカ合衆国と太陽系外惑星 · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

アメリカ航空宇宙局と太陽系 · アメリカ航空宇宙局と太陽系外惑星 · 続きを見る »

イオ (衛星)

イオ (Jupiter I Io) は、木星の第1衛星。2007年までに発見された衛星の中で内側から5番目の軌道を回っている。地球以外で最初に活火山が観測された天体である。名はギリシア神話に登場する人物、イーオーにちなむ。なお、同名の小惑星 (85) イオも存在する。 この衛星はガリレオ・ガリレイによって発見されており、そのためエウロパ、ガニメデ、カリストとあわせてガリレオ衛星と呼ばれている。 比較的明るい衛星で、双眼鏡でも観察できる。 宇宙探査機のパイオニアやボイジャーなどによって、火星の衛星(フォボス、ダイモス)などと同様に接近写真が撮られ、観測された。.

イオ (衛星)と太陽系 · イオ (衛星)と太陽系外惑星 · 続きを見る »

ウィリアム・ハーシェル

ー・フレデリック・ウィリアム・ハーシェル(Sir Frederick William Herschel, 1738年11月15日 - 1822年8月25日)は、ドイツのハノーファー出身のイギリスの天文学者・音楽家・望遠鏡製作者。ドイツ語名はフリードリヒ・ヴィルヘルム・ヘルシェル(Friedrich Wilhelm Herschel)である。天王星の発見や赤外線放射の発見など、天文学における数多くの業績で知られる。.

ウィリアム・ハーシェルと太陽系 · ウィリアム・ハーシェルと太陽系外惑星 · 続きを見る »

エリダヌス座イプシロン星

リダヌス座ε星(エリダヌスざイプシロンせい、Epsilon Eridani, ε Eri)は、エリダヌス座にある4等級の恒星である。.

エリダヌス座イプシロン星と太陽系 · エリダヌス座イプシロン星と太陽系外惑星 · 続きを見る »

エキセントリック・プラネット

ントリック・プラネットHD 96167 bの軌道。比較のため太陽系の4つの岩石惑星の軌道が描かれている。 エキセントリック・プラネット(Eccentric planet)とは太陽系外惑星において発見された、軌道離心率の大きなタイプの惑星の俗称である。何をもって離心率が高いとみなすかについて明確な定義はないが、例えば0.1という目安が挙げられる。質量が木星程度のものはエキセントリック・ジュピター(Eccentric Jupiter)とも呼ばれる。 太陽系の惑星は水星を除いてその公転軌道が離心率0.1にも満たず、ほぼ真円に近い状態で運動している。しかしながら、2006年の時点で発見された太陽系外惑星の実に2/3が離心率0.2以上の楕円軌道を描いている。この事はホット・ジュピターとともに、これまでの太陽系形成論を根本的に見直す契機となった。.

エキセントリック・プラネットと太陽系 · エキセントリック・プラネットと太陽系外惑星 · 続きを見る »

ケプラーの法則

プラーの法則(ケプラーのほうそく)は、1619年にヨハネス・ケプラーによって発見された惑星の運動に関する法則である。.

ケプラーの法則と太陽系 · ケプラーの法則と太陽系外惑星 · 続きを見る »

スーパー・アース

ーパー・アース(英語:super-Earth、巨大地球型惑星)とは、太陽系外惑星のうち地球の数倍程度の質量を持ち、かつ主成分が岩石や金属などの固体成分と推定された惑星のことである。 スーパー・アースの範疇については、おおむね地球質量の数倍 - 10倍程度とされるが、現在のところ固定的な定義はなく、定められる予定もない。.

スーパー・アースと太陽系 · スーパー・アースと太陽系外惑星 · 続きを見る »

サイエンス

『サイエンス』(Science)は、1880年に創刊され、現在アメリカ科学振興協会 (AAAS)によって発行されている学術雑誌である。.

サイエンスと太陽系 · サイエンスと太陽系外惑星 · 続きを見る »

冥王星

冥王星(めいおうせい、134340 Pluto)は、太陽系外縁天体内のサブグループ(冥王星型天体)の代表例とされる、準惑星に区分される天体である。1930年にクライド・トンボーによって発見され、2006年までは太陽系第9惑星とされていた。離心率が大きな楕円形の軌道を持ち、黄道面から大きく傾いている。直径は2,370kmであり、地球の衛星である月の直径(3,474km)よりも小さい。冥王星の最大の衛星カロンは直径が冥王星の半分以上あり、それが理由で二重天体とみなされることもある。.

冥王星と太陽系 · 冥王星と太陽系外惑星 · 続きを見る »

公転

質量の差が'''大きい'''2つの天体の公転の様子。 質量の差が'''小さい'''2つの天体の公転の様子。 公転(こうてん、revolution)とは、ある物体が別の物体を中心にした円又は楕円の軌道に沿って回る運動の呼び名である。 地球は太陽を中心に公転している。太陽と地球の質量比は約330000:1なので図の上の場合に当たる(ただし実際の太陽系では、最も重力が大きい木星の影響を太陽系の惑星が受けている)。.

公転と太陽系 · 公転と太陽系外惑星 · 続きを見る »

国立天文台

国立天文台(こくりつてんもんだい、National Astronomical Observatory of Japan, NAOJ)は、理論・観測の両面から天文学を研究する日本の研究所・大学共同利用機関である。大学共同利用機関法人自然科学研究機構を構成する研究所の1つでもある。 日本国外のハワイ観測所などいくつかの観測所や、三鷹キャンパスなどで研究活動をしており、総称として国立天文台と呼ばれる。本部は東京都三鷹市の三鷹キャンパス内にある。.

国立天文台と太陽系 · 国立天文台と太陽系外惑星 · 続きを見る »

国際天文学連合

国際天文学連合(こくさいてんもんがくれんごう、英:International Astronomical Union:IAU)は、世界の天文学者で構成されている国際組織である。国際科学会議 (ICSU) の下部組織となっている。恒星、惑星、小惑星、その他の天体に対する命名権を取り扱っている。その命名規則のために専門作業部会が設けられている。 IAUは天文電報の発行業務にも関わっており、スミソニアン天体物理観測所が運営している天文電報中央局 (Central Bureau for Astronomical Telegrams; CBAT) について支援している。 IAUは1919年に多くの団体を統合して設立された。最初の会長にはフランスのバンジャマン・バイヨーが選出された。 2009年現在、会員として、10,145人の天文学者などの個人会員と64の国家会員が所属している。 Headquarter(本部)の事務局は、フランスのパリのBd Arago(アラゴ通り)にある。総会はさまざまな国において開催されている。→#総会.

国際天文学連合と太陽系 · 国際天文学連合と太陽系外惑星 · 続きを見る »

環 (天体)

(わ、planetary ring)は、惑星の周囲を公転する塵やその他の小さな粒子が平らな円盤状の領域に分布しているリング状の構造である。最も壮大で有名な惑星の環は土星の環であるが、太陽系に4つ存在する巨大ガス惑星、すなわち木星・土星・天王星・海王星は全て環を持っている。 また小惑星のうちカリクローにも環があることが、カリクローによる恒星の掩蔽の観測より確認されている。宇宙探査機カッシーニの撮影結果から、土星の第5衛星レアにも環がある可能性があるとみられていたが、撮影結果の精査の結果、結局環はなかったとされている。.

太陽系と環 (天体) · 太陽系外惑星と環 (天体) · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

太陽系と炭素 · 太陽系外惑星と炭素 · 続きを見る »

白色矮星

白色矮星(はくしょくわいせい、white dwarf)は、恒星が進化の終末期にとりうる形態の一つ。質量は太陽と同程度から数分の1程度と大きいが、直径は地球と同程度かやや大きいくらいに縮小しており、非常に高密度の天体である。 シリウスの伴星(シリウスB)やヴァン・マーネン星など、数百個が知られている。太陽近辺の褐色矮星より質量が大きい天体のうち、4分の1が白色矮星に占められていると考えられている。.

太陽系と白色矮星 · 太陽系外惑星と白色矮星 · 続きを見る »

褐色矮星

褐色矮星(かっしょくわいせい、英:brown dwarf)とは、その質量が木星型惑星より大きく、赤色矮星より小さな超低質量天体の分類である。軽水素 (H) の核融合を起こすには質量が小さすぎるために恒星になることができない天体。.

太陽系と褐色矮星 · 太陽系外惑星と褐色矮星 · 続きを見る »

赤色矮星

赤色矮星のイメージ 赤色矮星(せきしょくわいせい、red dwarf)とは、主系列星の中で特に小さい恒星のグループ。主にスペクトル型M型の主系列星を指すが、低温のK型主系列星の一部を含めることもある。.

太陽系と赤色矮星 · 太陽系外惑星と赤色矮星 · 続きを見る »

重力

重力(じゅうりょく)とは、.

太陽系と重力 · 太陽系外惑星と重力 · 続きを見る »

重力崩壊

重力崩壊のメカニズムのモデル 重力崩壊(じゅうりょくほうかい)は、末期の恒星が自らの重力に耐え切れずに崩壊する物理現象。 恒星は重力によって中心部に向かって凝縮している一方で、プラズマの熱運動や電気的な反発力によって一定の大きさを保っている。核融合が進むと原子量の小さい原子核が無くなることによって核融合が停止し、反発力が衰える。それによって恒星はより凝縮され、再び核融合が始まれば凝縮が止まる。しかし、中心部が鉄で占められるようになると(鉄の原子核は最も安定なため、これ以上の核融合は起こらない)、今度は鉄がガンマ線を吸収しヘリウムと中性子に分解される光崩壊が起こることになる。すると、星の中心部は空洞と同じ状態になり、今度は周りの物質が急激に中心へ落ち込み圧縮される。この圧縮により中心部にコアができ、そのコアで反射した衝撃波が外部へ広がり、星が崩壊する。これが重力崩壊であり、II型の超新星爆発である。 中心部の圧縮されたコアは、ブラックホールまたは中性子星となる。 また、理論予想としては、さらに核子が融解してクォークが剥き出しになるクォーク星の存在が考えられている。 Category:コンパクト星 Category:重力.

太陽系と重力崩壊 · 太陽系外惑星と重力崩壊 · 続きを見る »

自由浮遊惑星

自由浮遊惑星(じゆうふゆうわくせい)あるいは浮遊惑星(ふゆうわくせい、rogue planet)とは、惑星程度の質量であるが、それらが形成された恒星系から弾き出され、恒星や褐色矮星、あるいはその他の天体に重力的に束縛されておらず、銀河を直接公転している天体のことである。 2004年にはS Ori 70やCha 110913-773444など、そのような天体の候補がいくつか発見された。2011年までに、名古屋大学、大阪大学などの研究チームがマイクロレンズ法を用いて行った観測によると、銀河系全体の恒星の数の2倍は存在するとみられ、数千億個になると予想されている。 惑星質量天体のいくつかは恒星と同じくガス雲の重力崩壊により形成されたものと考えられており、そのような天体に対して国際天文学連合は準褐色矮星 (sub-brown dwarf) と呼ぶことを提案していた。この種の惑星質量天体について、プラネターという名称も提案されていたが、天文学、惑星科学一般に広く受け入れられてはいない。.

太陽系と自由浮遊惑星 · 太陽系外惑星と自由浮遊惑星 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

太陽系と酸素 · 太陽系外惑星と酸素 · 続きを見る »

連星

連星(れんせい、)とは2つの恒星が両者の重心の周りを軌道運動している天体である。双子星(ふたごぼし)とも呼ばれる。連星は、地球から遠距離にあると、一つの恒星と思われ、その後に連星である事が判明する場合もある。この2世紀間の観測で、肉眼で見える恒星の半数以上が連星である可能性が示唆されている。通常は明るい方の星を主星、暗い方を伴星と呼ぶ。また、3つ以上の星が互いに重力的に束縛されて軌道運動している系もあり、そのような場合にはn連星またはn重連星などと呼ばれる。 また、二重星という言葉も連星を示す場合が多い。しかし、実際には、複数の恒星が地球から見て、同じ方向に位置しており、「見かけ上、連星のように見える」場合を表す。それぞれの恒星の、地球からの距離は全く異なり、物理的にも何の関連性も無い。二重星は、距離が異なるので、光度の差から、年周視差や視線速度を正確に求める事が出来る。しかし、中にはアルビレオのように、二重星か真の連星かが分かっていないものもある。.

太陽系と連星 · 太陽系外惑星と連星 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

太陽系と恒星 · 太陽系外惑星と恒星 · 続きを見る »

欧州宇宙機関

欧州宇宙機関(おうしゅううちゅうきかん、, ASE、, ESA)は、1975年5月30日にヨーロッパ各国が共同で設立した、宇宙開発・研究機関である。設立参加国は当初10か国、現在は19か国が参加し、2000人を超えるスタッフがいる。 本部はフランスに置かれ、その活動でもフランス国立宇宙センター (CNES) が重要な役割を果たし、ドイツ・イタリアがそれに次ぐ地位を占める。主な射場としてフランス領ギアナのギアナ宇宙センターを用いている。 人工衛星打上げロケットのアリアンシリーズを開発し、アリアンスペース社(商用打上げを実施)を通じて世界の民間衛星打ち上げ実績を述ばしている。2010年には契約残数ベースで過去に宇宙開発などで存在感を放ったソビエト連邦の後継国のロシア、スペースシャトル、デルタ、アトラスといった有力な打ち上げ手段を持つアメリカに匹敵するシェアを占めるにおよび、2014年には受注数ベースで60%のシェアを占めるにいたった。 ESA は欧州連合と密接な協力関係を有しているが、欧州連合の専門機関ではない。加盟各国の主権を制限する超国家機関ではなく、加盟国の裁量が大きい政府間機構として形成された。リスボン条約によって修正された欧州連合の機能に関する条約の第189条第3項では、「欧州連合は欧州宇宙機関とのあいだにあらゆる適切な関係を築く」と規定されている。.

太陽系と欧州宇宙機関 · 太陽系外惑星と欧州宇宙機関 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

太陽系と水素 · 太陽系外惑星と水素 · 続きを見る »

潮汐力

潮汐力(ちょうせきりょく、英語:tidal force)とは、重力によって起こる二次的効果の一種で、潮汐の原因である。起潮力(きちょうりょく)とも言う。潮汐力は物体に働く重力場が一定でなく、物体表面あるいは内部の場所ごとに異なっているために起こる。ある物体が別の物体から重力の作用を受ける時、その重力加速度は、重力源となる物体に近い側と遠い側とで大きく異なる。これによって、重力を受ける物体は体積を変えずに形を歪めようとする。球形の物体が潮汐力を受けると、重力源に近い側と遠い側の2ヶ所が膨らんだ楕円体に変形しようとする。.

太陽系と潮汐力 · 太陽系外惑星と潮汐力 · 続きを見る »

木星

記載なし。

太陽系と木星 · 太陽系外惑星と木星 · 続きを見る »

木星型惑星

木星型惑星(もくせいがたわくせい、英語: jovian planet)とは、惑星を分類する場合の、木星と類似の惑星の総称。大惑星(英語: giant planet)ともいう。.

太陽系と木星型惑星 · 太陽系外惑星と木星型惑星 · 続きを見る »

月(つき、Mond、Lune、Moon、Luna ルーナ)は、地球の唯一の衛星(惑星の周りを回る天体)である。太陽系の衛星中で5番目に大きい。地球から見て太陽に次いで明るい。 古くは太陽に対して太陰とも、また日輪(.

太陽系と月 · 太陽系外惑星と月 · 続きを見る »

惑星

惑星(わくせい、πλανήτης、planeta、planet)とは、恒星の周りを回る天体のうち、比較的低質量のものをいう。正確には、褐色矮星の理論的下限質量(木星質量の十数倍程度)よりも質量の低いものを指す。ただし太陽の周りを回る天体については、これに加えて後述の定義を満たすものだけが惑星である。英語 planet の語源はギリシア語のプラネテス(さまよう者、放浪者などの意。IPA: /planítis/ )。 宇宙のスケールから見れば惑星が全体に影響を与える事はほとんど無く、宇宙形成論からすれば考慮の必要はほとんど無い。だが、天体の中では非常に多種多様で複雑なものである。そのため、天文学だけでなく地質学・化学・生物学などの学問分野では重要な対象となっている別冊日経サイエンス167、p.106-117、系外惑星が語る惑星系の起源、Douglas N. C.Lin。.

太陽系と惑星 · 太陽系外惑星と惑星 · 続きを見る »

海王星

海王星(かいおうせい、Neptunus、Neptune)は、太陽系の太陽に近い方から8番目の惑星である。太陽系惑星の中では最も太陽から遠い位置を公転している。名称のNeptuneは、ローマ神話における海神ネプトゥーヌスにちなむ。.

太陽系と海王星 · 太陽系外惑星と海王星 · 続きを見る »

17世紀

ルイ14世の世紀。フランスの権勢と威信を示すために王の命で壮麗なヴェルサイユ宮殿が建てられた。画像は宮殿の「鏡の間」。 スペインの没落。国王フェリペ4世の時代に「スペイン黄金時代」は最盛期を過ぎ国勢は傾いた。画像は国王夫妻とマルガリータ王女を取り巻く宮廷の女官たちを描いたディエゴ・ベラスケスの「ラス・メニーナス」。 ルネ・デカルト。「我思う故に我あり」で知られる『方法序説』が述べた合理主義哲学は世界の見方を大きく変えた。画像はデカルトとその庇護者であったスウェーデン女王クリスティナ。 プリンキピア』で万有引力と絶対空間・絶対時間を基盤とするニュートン力学を構築した。 オランダの黄金時代であり数多くの画家を輩出した。またこの絵にみられる実験や観察は医学に大きな発展をもたらした。 チューリップ・バブル。オスマン帝国からもたらされたチューリップはオランダで愛好され、その商取引はいつしか過熱し世界初のバブル経済を生み出した。画像は画家であり園芸家でもあったエマヌエル・スウェールツ『花譜(初版は1612年刊行)』の挿絵。 三十年戦争の終結のために開かれたミュンスターでの会議の様子。以後ヨーロッパの国際関係はヴェストファーレン体制と呼ばれる主権国家を軸とする体制へと移行する。 チャールズ1世の三面肖像画」。 ベルニーニの「聖テレジアの法悦」。 第二次ウィーン包囲。オスマン帝国と神聖ローマ帝国・ポーランド王国が激突する大規模な戦争となった。この敗北に続いてオスマン帝国はハンガリーを喪失し中央ヨーロッパでの優位は揺らぐことになる。 モスクワ総主教ニーコンの改革。この改革で奉神礼や祈祷の多くが変更され、反対した人々は「古儀式派」と呼ばれ弾圧された。画像はワシーリー・スリコフの歴史画「貴族夫人モローゾヴァ」で古儀式派の信仰を守り致命者(殉教者)となる貴族夫人を描いている。 スチェパン・ラージン。ロシアではロマノフ朝の成立とともに農民に対する統制が強化されたが、それに抵抗したドン・コサックの反乱を率いたのがスチェパン・ラージンである。画像はカスピ海を渡るラージンと一行を描いたワシーリー・スリコフの歴史画。 エスファハーンの栄華。サファヴィー朝のシャー・アッバース1世が造営したこの都市は「世界の半分(エスファハーン・ネスフェ・ジャハーン・アスト)」と讃えられた。画像はエスファハーンに建てられたシェイク・ロトフォラー・モスクの内部。 タージ・マハル。ムガル皇帝シャー・ジャハーンが絶世の美女と称えられた愛妃ムムターズ・マハルを偲んでアーグラに建てた白亜の霊廟。 アユタヤ朝の最盛期。タイでは中国・日本のみならずイギリスやオランダの貿易船も来訪し活況を呈した。画像はナーラーイ王のもとで交渉をするフランス人使節団(ロッブリーのプラ・ナーライ・ラーチャニーウエート宮殿遺跡記念碑)。 イエズス会の中国宣教。イエズス会宣教師は異文化に対する順応主義を採用し、中国の古典教養を尊重する漢人士大夫の支持を得た。画像は『幾何原本』に描かれたマテオ・リッチ(利瑪竇)と徐光啓。 ブーヴェの『康熙帝伝』でもその様子は窺える。画像は1699年に描かれた読書する40代の康熙帝の肖像。 紫禁城太和殿。明清交代の戦火で紫禁城の多くが焼亡したが、康熙帝の時代に再建がなされ現在もその姿をとどめている。 台湾の鄭成功。北京失陥後も「反清復明」を唱え、オランダ人を駆逐した台湾を根拠地に独立政権を打ち立てた。その母が日本人だったこともあり近松門左衛門の「国姓爺合戦」などを通じて日本人にも広く知られた。 江戸幕府の成立。徳川家康は関ヶ原の戦いで勝利して征夷大将軍となり、以後260年余にわたる幕府の基礎を固めた。画像は狩野探幽による「徳川家康像」(大阪城天守閣蔵)。 日光東照宮。徳川家康は死後に東照大権現の称号を贈られ日光に葬られた。続く三代将軍徳川家光の時代までに豪奢で絢爛な社殿が造営された。画像は「日暮御門」とも通称される東照宮の陽明門。 歌舞伎の誕生。1603年に京都北野社の勧進興業で行われた出雲阿国の「かぶき踊り」が端緒となり、男装の女性による奇抜な演目が一世を風靡した。画像は『歌舞伎図巻』下巻(名古屋徳川美術館蔵)に描かれた女歌舞伎の役者采女。 新興都市江戸。17世紀半ばには江戸は大坂や京都を凌ぐ人口を擁するまでとなった。画像は明暦の大火で焼失するまで威容を誇った江戸城天守閣が描かれた「江戸図屏風」(国立歴史民俗博物館蔵)。 海を渡る日本の陶磁器。明清交代で疲弊した中国の陶磁器産業に代わり、オランダ東インド会社を通じて日本から陶磁器が数多く輸出された。画像は1699年に着工されたベルリンのシャルロッテンブルク宮殿の「磁器の間」。 海賊の黄金時代。西インド諸島での貿易の高まりはカリブ海周辺に多くの海賊を生み出した。画像はハワード・パイルが描いた「カリブ海のバッカニーア」。 スペイン副王支配のリマ。リマはこの当時スペインの南米支配の拠点であり、カトリック教会によるウルトラバロックとも呼ばれる壮麗な教会建築が並んだ。画像は1656年の大地震で大破したのちに再建されたリマのサン・フランシスコ教会・修道院。 17世紀(じゅうしちせいき、じゅうななせいき)は、西暦1601年から西暦1700年までの100年間を指す世紀。.

17世紀と太陽系 · 17世紀と太陽系外惑星 · 続きを見る »

上記のリストは以下の質問に答えます

太陽系と太陽系外惑星の間の比較

太陽系外惑星が235を有している太陽系は、364の関係を有しています。 彼らは一般的な56で持っているように、ジャカード指数は9.35%です = 56 / (364 + 235)。

参考文献

この記事では、太陽系と太陽系外惑星との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »