ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

太陽と遷移層

ショートカット: 違い類似点ジャカード類似性係数参考文献

太陽と遷移層の違い

太陽 vs. 遷移層

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。. TRACEによる波長19.5 nmの画像。遷移層は、太陽表面の上の明るい霧のように見える。 遷移層(Solar transition region)は、太陽の大気で彩層とコロナの間の領域である 。 紫外線望遠鏡を用いて宇宙から観測することができる。いくつかの無関係だが重要な遷移が起こっているため、重要である。.

太陽と遷移層間の類似点

太陽と遷移層は(ユニオンペディアに)共通で5ものを持っています: 彩層ヘリウムコロナスペクトル黒体放射

彩層

彩層(さいそう、chromosphere)とは、太陽などの恒星の表層部分で、光球の外側、コロナの内側に位置する薄いガスによって形成される層。 太陽の場合、厚さは数千から1万km。彩層の最下層である温度最低層では光球よりやや低温(4,700-5,800K)で、高度と共に増加してコロナとの境界層(遷移層)付近では1万度ケルビンに達する。彩層では磁場が支配的であり、磁気エネルギーの解放現象である太陽フレアや、プラズマが磁力線によって太陽大気中に保持された紅炎(プロミネンス)が観測される。肉眼では地球上から視認することはできないが、皆既日食発生時や水素の出すHα線フィルターを用いることで観測する事ができる。 Category:太陽.

太陽と彩層 · 彩層と遷移層 · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

ヘリウムと太陽 · ヘリウムと遷移層 · 続きを見る »

コロナ

1999年8月11日の皆既日食で見られたコロナ コロナ (Corona) とは、太陽の周りに見える自由電子の散乱光のこと。もしくは、太陽表面にあるもっとも外縁にある電気的に解離したガス層。「太陽コロナ」との呼び方もある。.

コロナと太陽 · コロナと遷移層 · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

スペクトルと太陽 · スペクトルと遷移層 · 続きを見る »

黒体放射

黒体放射()とは黒体が放出する熱放射で黒体の温度のみで定まり、実在する物体の放射度は、概して黒体の放射度よりも小さく、黒体放射の波長はプランクの放射式によって理論的に定まる。 温度が低いときは赤っぽく、温度が高いほど青白くなる。夜空に輝く星々も青白い星ほど温度が高い。温度はK(ケルビン)で表示される。 理想的な黒体放射をもっとも再現するとされる空洞放射が温度のみに依存するという法則は、1859年にグスタフ・キルヒホフにより発見された。以来、空洞放射のスペクトルを説明する理論が研究され、最終的に1900年にマックス・プランクによりプランク分布が発見されたことで、その理論が完成された。 物理的に黒体放射をプランク分布で説明するためには、黒体が電磁波を放出する(電気双極子が振動する)ときの振動子の量子化を仮定する必要がある(プランクの法則)。つまり、振動子が持ちうるエネルギー は振動数 の整数倍に比例しなければならない。 この比例定数 は、後にプランク定数とよばれ、物理学の基本定数となった。これは、物理量は連続な値をとり量子化されない、とする古典力学と反する仮定であったが、1905年にアルベルト・アインシュタインがこのプランクの量子化の仮定と光子の概念とを用いて光電効果を説明したことにより、この量子化の仮定に基づいた量子力学が築かれることとなった。.

太陽と黒体放射 · 遷移層と黒体放射 · 続きを見る »

上記のリストは以下の質問に答えます

太陽と遷移層の間の比較

遷移層が17を有している太陽は、270の関係を有しています。 彼らは一般的な5で持っているように、ジャカード指数は1.74%です = 5 / (270 + 17)。

参考文献

この記事では、太陽と遷移層との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »