ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

塩素と臭素

ショートカット: 違い類似点ジャカード類似性係数参考文献

塩素と臭素の違い

塩素 vs. 臭素

Chlore lewis 塩素(えんそ、chlorine)は原子番号17の元素。元素記号は Cl。原子量は 35.45。ハロゲン元素の一つ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の臭いを持つ黄緑色の気体で、腐食性と強い毒を持つ。. 臭素(しゅうそ、bromine)は、原子番号 35、原子量 79.9 の元素である。元素記号は Br。ハロゲン元素の一つ。 単体(Br2、二臭素)は常温、常圧で液体(赤褐色)である。分子量は 159.8。融点 -7.3 ℃、沸点 58.8 ℃。反応性は塩素より弱い。刺激臭を持ち、猛毒である。海水中にも微量存在する。.

塩素と臭素間の類似点

塩素と臭素は(ユニオンペディアに)共通で19ものを持っています: 原子番号原子量反磁性分子量アルゴンイオンオゾン層元素元素記号皮膚第17族元素直方晶系融点長さの比較酸化酸性酸化物沸点有機化合物海水

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

原子番号と塩素 · 原子番号と臭素 · 続きを見る »

原子量

原子量(げんしりょう、英: atomic weight)または相対原子質量(そうたいげんししつりょう、英:relative atomic mass)とは、「一定の基準によって定めた原子の質量」原子量、『理化学事典』、第5版、岩波書店。ISBN 978-4000800907。である。 その基準は歴史的変遷を経ており、現在のIUPACの定義によれば1個の原子の質量の原子質量単位に対する比であり、Eを原子や元素を表す記号として Ar(E) という記号で表される。すなわち12C原子1個の質量に対する比の12倍である。元素に同位体が存在する場合は核種が異なるそれぞれの同位体ごとに原子の質量が異なるが、ほとんどの元素において同位体存在比は一定なので、原子量は存在比で補正された元素ごとの平均値として示される。同位体存在比の精度が変動するため、公示されている原子量の値や精度も変動する。 質量と質量との比なので比重と同様に無次元量だが、その数値は定義上、1個の原子の質量を原子質量単位で表した値に等しい。また物質量が1molの原子の質量をg単位で表した数値、すなわちg·mol−1単位で表した原子のモル質量をモル質量定数 1 g·mol−1 で除して単位を除去した数値にも等しい。 同位体存在比は、精度を高めると試料の由来(たとえば産地、地質学的年代)によって厳密には異なる。測定精度の向上と各試料の全天然存在量予測の変動により、同位体存在比の精度が変動する。そのことによりIUPACの下部組織である (CIAAW) により定期的に「原子量表」の改訂が発表され、これが「標準原子量」と呼ばれている。その改訂は隔年で行われ、奇数年に発表されている。日本化学会原子量小委員会はこの表をもとに原子量表を作成し、日本化学会会誌「化学と工業」4月号で毎年発表している。 原子量表の改定や試料間の原子量の差異があるとは言え、有効数字3桁程度では大部分の元素の原子量は十分に安定している(主な例外: リチウム、水素)。そのため、化学反応等においては、実用上は問題を生じない。一方、精密分析や公示文書の値を計算する場合は、最新の原子量表の値を使うべきである。 1961年まで、物理学では16Oの質量を、化学では天然同位体比の酸素の質量を基準としていた。.

原子量と塩素 · 原子量と臭素 · 続きを見る »

反磁性

反磁性(はんじせい、diamagnetism)とは、磁場をかけたとき、物質が磁場の逆向きに磁化され(=負の磁化率)、磁場とその勾配の積に比例する力が、磁石に反発する方向に生ずる磁性のことである 。 反磁性体は自発磁化をもたず、磁場をかけた場合にのみ反磁性の性質が表れる。反磁性は、1778年にセバールド・ユスティヌス・ブルグマンス によって発見され、その後、1845年にファラデーがその性質を「反磁性」と名づけた。 原子中の対になった電子(内殻電子を含む)が必ず弱い反磁性を生み出すため、実はあらゆる物質が反磁性を持っている。しかし、反磁性は非常に弱いため、強磁性や常磁性といったスピンによる磁性を持つ物質では隠れて目立たない。つまり、差し引いた結果の磁性として反磁性があらわれている物質のことを反磁性体と呼ぶに過ぎない。 このように、ほとんどの物質において反磁性は非常に弱いが、超伝導体は例外的に強い反磁性を持つ(後述)。なお、標準状態において最も強い反磁性をもつ物質はビスマスである。 なお、反強磁性(antiferromagnetism)は反磁性とは全く違う現象である。.

反磁性と塩素 · 反磁性と臭素 · 続きを見る »

分子量

分子量(ぶんしりょう、)または相対分子質量(そうたいぶんししつりょう、)とは、物質1分子の質量の統一原子質量単位(静止して基底状態にある自由な炭素12 (12C) 原子の質量の1/12)に対する比であり、分子中に含まれる原子量の総和に等しい。 本来、核種組成の値によって変化する無名数である。しかし、特に断らない限り、天然の核種組成を持つと了解され、その場合には、構成元素の天然の核種組成に基づいた相対原子質量(原子量)を用いて算出される。.

分子量と塩素 · 分子量と臭素 · 続きを見る »

アルゴン

アルゴン(argon)は原子番号 18 の元素で、元素記号は Ar である。原子量は 39.95。周期表において第18族元素(希ガス)かつ第3周期元素に属す。.

アルゴンと塩素 · アルゴンと臭素 · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

イオンと塩素 · イオンと臭素 · 続きを見る »

オゾン層

ゾン層(オゾンそう )とは地球の大気中でオゾンの濃度が高い部分のことである。オゾンは、高度約10 - 50 kmほどの成層圏に多く存在し、特に高度約25 kmで最も密度が高くなる。.

オゾン層と塩素 · オゾン層と臭素 · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

元素と塩素 · 元素と臭素 · 続きを見る »

元素記号

在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう)とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。現在は、1、2、ないし3文字のアルファベットが用いられる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。 全ての元素記号がラテン語名と一致しているが、ギリシア語、英語、ドイツ語(その他スペイン語やスウェーデンの地名からの採用もある)などからの採用も多く、ラテン語名との一致は偶然または語源を通した間接的なものである。元素名が確定されていない超ウラン元素については、3文字の系統名が用いられる。 物質の構成要素を記号であらわすことはかつての錬金術においてもおこなわれていた。 化学者ジョン・ドルトンも独自の記号を開発して化学反応を記述していたが、現在はアルファベットでの表記が国際的に使われている。 原子番号16番で質量数35の放射性硫黄原子1つと酸素原子4つからなる2価の陰イオンの硫酸イオンのイオン式。 原子番号や質量数を付記する場合、原子番号は左下に (13Al)、質量数は左上に (27Al)、イオン価は右肩に (Al3+)、原子数は右下に (N2) 付記する。.

元素記号と塩素 · 元素記号と臭素 · 続きを見る »

皮膚

膚(ひふ)は、動物の器官のひとつで、体の表面をおおっている層のこと生化学辞典第2版、p.1068 【皮膚】。体の内外を区切り、その境をなす構造である。皮膚と毛、爪、羽毛、鱗など、それに付随する構造(器官)とをあわせて、外皮系という器官系としてまとめて扱う場合がある。また、動物種によっては、皮膚感覚を伝える感覚器の働きも持っている場合がある。ヒトの皮膚は「肌」(はだ)とも呼ばれる。 高等脊椎動物では上皮性の表皮、その下にある結合組織系の真皮から構成され、さらに皮下組織そして多くの場合には脂肪組織へと繋がってゆく。 ヒトの皮膚は、上皮部分では細胞分裂から角化し、垢となって剥がれ落ちるまで約4週間かかる解剖学第2版、p.26-31、外皮構造(皮膚)。.

塩素と皮膚 · 皮膚と臭素 · 続きを見る »

第17族元素

17族元素(だいじゅうななぞくげんそ、halogèneアロジェーヌ、halogen ハロゲン)は周期表において第17族に属する元素の総称。フッ素・塩素・臭素・ヨウ素・アスタチン・テネシンがこれに分類される。ただしアスタチンは半減期の長いものでも数時間であるため、その化学的性質はヨウ素よりやや陽性が高いことがわかっている程度である。またテネシンは2009年にはじめて合成されており、わかっていることはさらに少ない。 フッ素、塩素、臭素、ヨウ素は性質がよく似ており、アルカリ金属あるいはアルカリ土類金属と典型的な塩を形成するので、これら元素からなる元素族をギリシャ語の 塩 alos と、作る gennao を合わせ「塩を作るもの」という意味の「halogen ハロゲン」と、18世紀フランスで命名された。これらの任意の元素を表すために化学式中ではしばしば X と表記される。任意のハロゲン単体を X2 と表す。.

塩素と第17族元素 · 第17族元素と臭素 · 続きを見る »

直方晶系

方晶系(ちょくほうしょうけい、)は、7つの結晶系の1つ。対応するブラベー格子は、単純直方格子・体心直方格子・面心直方格子・底心直方格子の4種類。古くは「斜方晶系(しゃほうしょうけい)」の訳語があてられたが、現在は「直方晶系」の訳語が推奨される(後述)。 直方晶系の結晶構造は、直交する対のうちの2つに沿って正六面体格子を異なる因子で伸ばすことにより得られるものであり、その結果、長方形の底面(a×b)とこれらとは異なる高さ(c)を持つ直角の角柱となる。a、b、cは互いに異なる。3つ全ての底面は垂直に交わる。3つの格子ベクトルも互いに直交する。.

塩素と直方晶系 · 直方晶系と臭素 · 続きを見る »

融点

融点(ゆうてん、Schmelzpunkt、point de fusion、melting point)とは、固体が融解し液体になる時の温度のことをいう。ヒステリシスが無い場合には凝固点(液体が固体になる時の温度)と一致する。また、三重点すなわち平衡蒸気圧下の融点は物質固有の値を取り、不純物が含まれている場合は凝固点降下により融点が低下することから物質を同定したり、純度を確認したりする手段として用いられる。 熱的に不安定な物質は溶融と共に分解反応が生じる場合もある。その場合の温度は分解点と呼ばれる場合があり、融点に(分解)と併記されることがある。.

塩素と融点 · 臭素と融点 · 続きを見る »

長さの比較

本項では、長さの比較(ながさのひかく)ができるよう、長さを昇順に表にする。.

塩素と長さの比較 · 臭素と長さの比較 · 続きを見る »

酸化

酸化(さんか、英:oxidation)とは、対象の物質が酸素と化合すること。 例えば、鉄がさびて酸化鉄になる場合、鉄の電子は酸素(O2)に移動しており、鉄は酸化されていることが分かる。 目的化学物質を酸化する為に使用する試薬、原料を酸化剤と呼ぶ。ただし、反応における酸化と還元との役割は物質間で相対的である為、一般的に酸化剤と呼ぶ物質であっても、実際に酸化剤として働くかどうかは、反応させる相手の物質による。.

塩素と酸化 · 臭素と酸化 · 続きを見る »

酸性酸化物

酸性酸化物(さんせいさんかぶつ)とは、水と反応して酸を生じるか、塩基と反応して塩を生じる非金属元素または酸化数の大きな金属元素の酸化物である。しばしば酸無水物と混同される。 酸性酸化物には以下のものがある。.

塩素と酸性酸化物 · 臭素と酸性酸化物 · 続きを見る »

沸点

沸点(ふってん、)とは、液体の飽和蒸気圧が外圧液体の表面にかかる圧力のこと。と等しくなる温度であるアトキンス第8版 p.122.

塩素と沸点 · 沸点と臭素 · 続きを見る »

有機化合物

有機化合物(ゆうきかごうぶつ、organic compound)は、炭素を含む化合物の大部分をさす『岩波 理化学辞典』岩波書店。炭素原子が共有結合で結びついた骨格を持ち、分子間力によって集まることで液体や固体となっているため、沸点・融点が低いものが多い。 下記の歴史的背景から、炭素を含む化合物であっても、一酸化炭素、二酸化炭素、炭酸塩、青酸、シアン酸塩、チオシアン酸塩等の単純なものは例外的に無機化合物と分類し、有機化合物には含めない。例外は慣習的に決められたものであり『デジタル大辞泉』には、「炭素を含む化合物の総称。ただし、二酸化炭素・炭酸塩などの簡単な炭素化合物は習慣で無機化合物として扱うため含めない。」と書かれている。、現代では単なる「便宜上の区分」である。有機物質(ゆうきぶっしつ、organic substance『新英和大辞典』研究社)あるいは有機物(ゆうきぶつ、organic matter『新英和大辞典』研究社)とも呼ばれるあくまで別の単語であり、同一の概念ではない。。.

塩素と有機化合物 · 有機化合物と臭素 · 続きを見る »

海水

海面上から見た海水(シンガポール) スクーバダイビング中に見る海水の深い青(タイのシミランにて) 海水(かいすい)とは、海の水のこと。水を主成分とし、3.5 %程度の塩(えん)、微量金属から構成される。 地球上の海水の量は約13.7億 km3で、地球上の水分の97 %を占める。密度は1.02 - 1.035 g/cm3。.

塩素と海水 · 海水と臭素 · 続きを見る »

上記のリストは以下の質問に答えます

塩素と臭素の間の比較

臭素が99を有している塩素は、139の関係を有しています。 彼らは一般的な19で持っているように、ジャカード指数は7.98%です = 19 / (139 + 99)。

参考文献

この記事では、塩素と臭素との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »