ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

圧縮率

索引 圧縮率

圧縮率(あっしゅくりつ、Compressibility)とは、系にかかる圧力に対して、系の体積がどの程度変化するかを表す状態量である。.

18 関係: 弾性率体積圧力圧縮率因子圧縮性流れポアソン比ヤング率ラメ定数ダイヤモンド内部エネルギー剛性率状態量硬さ物性物理学非圧縮性自由エネルギー温度2004年

弾性率

弾性率(だんせいりつ、elastic modulus)は、変形のしにくさを表す物性値であり、弾性変形における応力とひずみの間の比例定数の総称である。弾性係数あるいは弾性定数とも呼ばれる。 1807年にトマス・ヤングによって導入された。.

新しい!!: 圧縮率と弾性率 · 続きを見る »

体積

体積(たいせき)とは、ある物体が 3 次元の空間でどれだけの場所を占めるかを表す度合いである。和語では嵩(かさ)という。.

新しい!!: 圧縮率と体積 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: 圧縮率と圧力 · 続きを見る »

圧縮率因子

圧縮率因子(あっしゅくりついんし、compressibility factor)は実在気体の振る舞いに関して、理想気体からのずれを表す無次元量のひとつである。圧縮因子あるいは圧縮係数ともいう。 1モルの実在の気体または理想気体について、P 、V 、n 、T をそれぞれその気体が受ける圧力、体積、モル数、温度とすると圧縮率因子 z は次のように表される。 ここで R は気体定数である。また、Vm は気体分子のモル体積、 V は理想気体としてプロットしたモル体積である(便宜上、前者をモル体積、後者を理想のモル体積と呼ぶことにする)。 モル体積と理想のモル体積の商をビリアル展開することでz を求める方法もある(詳細はビリアル方程式を参照)。 z は圧力 P に対してプロットすると物質固有の曲線になる。一般に十分低圧では1より小さく、十分高圧では1より大きくなる。これは実在気体では無視できない分子間力と分子自体の体積の2つの影響によるものである。z を対臨界定数P およびT の関数で表したのがz 線図で、気体の種類に関係なく適用できる。 理想気体では より圧縮率因子の値は常にz.

新しい!!: 圧縮率と圧縮率因子 · 続きを見る »

圧縮性流れ

圧縮性流れ(あっしゅくせいながれ)とは、流体力学における、密度が圧力の変化に応じて変化する流体である。縮む流体、圧縮流とも呼ばれる。圧縮性は特に気体で顕著に現れるため、圧縮性流れを扱う分野は、高速空気力学とも呼ばれる。 逆に密度が圧力によって変化しない流れを非圧縮性流れという。圧縮性流れと非圧縮性流れの最も顕著な違いは、圧縮性流れモデルは衝撃波とチョーク流れの存在を可能にすることである。.

新しい!!: 圧縮率と圧縮性流れ · 続きを見る »

ポアソン比

ポアソン比(ポアソンひ、英語:Poisson's ratio、Poisson coefficient)とは、物体に弾性限界内で応力を加えたとき、応力に直角方向に発生するひずみと応力方向に沿って発生するひずみの比のことである。ヤング率などと同じく弾性限界内では材料固有の定数と見なされる。 名称はフランスの物理学者シメオン・ドニ・ポアソンに由来する。.

新しい!!: 圧縮率とポアソン比 · 続きを見る »

ヤング率

ヤング率(ヤングりつ、Young's modulus)は、フックの法則が成立する弾性範囲における、同軸方向のひずみと応力の比例定数である。この名称はトマス・ヤングに由来する。縦弾性係数(たてだんせいけいすう、modulus of longitudinal elasticity)とも呼ばれる。.

新しい!!: 圧縮率とヤング率 · 続きを見る »

ラメ定数

ラメ定数(ラメていすう、Lamé's constants、ラメ乗数)とは、線形弾性論の基礎方程式で用いられる定数。弾性係数の一つで、応力の変化を与えたとき、弾性体の軸方向、剪断方向への変化のしやすさを表す。名称はフランスの数学者ガブリエル・ラメに因む。.

新しい!!: 圧縮率とラメ定数 · 続きを見る »

ダイヤモンド

ダイヤモンド( )は、炭素 (C) の同素体の1つであり、実験で確かめられている中では天然で最も硬い物質である。日本語で金剛石(こんごうせき)ともいう。ダイヤとも略される。結晶構造は多くが8面体で、12面体や6面体もある。宝石や研磨材として利用されている。ダイヤモンドの結晶の原子に不対電子が存在しないため、電気を通さない。 地球内部の非常に高温高圧な環境で生成されるダイヤモンドは定まった形で産出されず、また、角ばっているわけではないが、そのカットされた宝飾品の形から、菱形、トランプの絵柄(スート)、野球の内野、記号(◇)を指してダイヤモンドとも言われている。 ダイヤモンドという名前は、ギリシア語の (adámas 征服し得ない、屈しない)に由来する。イタリア語・スペイン語・ポルトガル語では diamánte(ディアマンテ)、フランス語では (ディアマン)、ポーランド語では (ディヤメント)、漢語表現では金剛石という。ロシア語では (ヂヤマント)というよりは (アルマース)という方が普通であるが、これは特に磨かれていないダイヤモンド原石のことを指す場合がある。磨かれたものについては (ブリリヤント)で総称されるのが普通。4月の誕生石である。石言葉は「永遠の絆・純潔・不屈」など。.

新しい!!: 圧縮率とダイヤモンド · 続きを見る »

内部エネルギー

内部エネルギー(ないぶエネルギー、)は、系の熱力学的な状態を表現する、エネルギーの次元をもつ示量性状態量の一つである。系が全体として持っている力学的エネルギー(運動エネルギーと位置エネルギー)に対する用語として、内部エネルギーと呼ばれる。 記号は や で表されることが多い。.

新しい!!: 圧縮率と内部エネルギー · 続きを見る »

剛性率

剛性率(ごうせいりつ)は弾性率の一種で、せん断力による変形のしにくさをきめる物性値である。せん断弾性係数(せん断弾性率)、ずれ弾性係数(ずれ弾性率)、横弾性係数、ラメの第二定数ともよばれる。剛性率は通常Gで表され、せん断応力とせん断ひずみの比で定義される。 ここで ヤング率が材料の引張り試験で容易に測定できるのに比べ、純せん断状態を作るのは難しいため直接測定しにくい値である。 等方性材料(異方性のない材料)では、ヤング率およびポアソン比との間に次の関係がある。 いくつかの材料のヤング率・剛性率・ポアソン比を下表に示す。.

新しい!!: 圧縮率と剛性率 · 続きを見る »

状態量

態量(じょうたいりょう、state quantity)とは、熱力学において、系(巨視的な物質または場)の状態だけで一意的に決まり、過去の履歴や経路には依存しない物理量のことである。元来は熱力学的平衡状態にある系だけで定義されるものだが,非平衡状態にも拡張されて用いられる。.

新しい!!: 圧縮率と状態量 · 続きを見る »

硬さ

さ(かたさ、hardness、硬度)とは物質、材料の特に表面または表面近傍の機械的性質の一つであり、材料が異物によって変形や傷を与えられようとする時の、物体の変形しにくさ、物体の傷つきにくさである。工業的に比較的簡単に検査でき、これを硬さ試験法と呼ぶ。例えば鋼製品の熱処理結果の管理などに用いられている。.

新しい!!: 圧縮率と硬さ · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: 圧縮率と物性物理学 · 続きを見る »

非圧縮性

連続体力学における非圧縮性(incompressibility)とは、連続体の密度が変形の前後で変化しないような性質を表す。連続体力学では質量保存則を考えるため、密度が一定であるならば体積も一定となる。非圧縮性を有する材料として、流体では河川を流れる水や音速を超えない範囲で運動している空気が挙げられる。これらを総称して、非圧縮性流体と呼んでいる。一方で、固体の場合は、ゴムに代表される超弾性体や降伏した金属などのような塑性体が挙げられる。.

新しい!!: 圧縮率と非圧縮性 · 続きを見る »

自由エネルギー

自由エネルギー(じゆうエネルギー、)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となるChang『生命科学系のための物理化学』 pp.63-65アトキンス『物理化学(上)』 pp.120-125。 自由エネルギーは1882年にヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギー()と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギー()と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G.

新しい!!: 圧縮率と自由エネルギー · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 圧縮率と温度 · 続きを見る »

2004年

この項目では、国際的な視点に基づいた2004年について記載する。.

新しい!!: 圧縮率と2004年 · 続きを見る »

ここにリダイレクトされます:

体積弾性係数体積弾性率圧縮性

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »