ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

固体と電気伝導

ショートカット: 違い類似点ジャカード類似性係数参考文献

固体と電気伝導の違い

固体 vs. 電気伝導

固体インスリンの単結晶形態 固体(こたい、solid)は物質の状態の一つ。固体内の原子は互いに強く結合しており、規則的な幾何学的格子状に並ぶ場合(金属や通常の氷などの結晶)と、不規則に並ぶ場合(ガラスなどのアモルファス)がある。 液体や気体と比較して、変形あるいは体積変化が非常に小さい。変形が全く起こらない剛体は理想化された固体の一つである。連続体力学においては、固体は静止状態においてもせん断応力の発生する物体と捉えられる。液体のように容器の形に合わせて流動することがなく、気体のように拡散して容器全体を占めることもない。 固体を扱う物理学は固体物理学と呼ばれ、物性物理学の一分野である。また物質科学はそもそも、強度や相変化といった固体の性質を扱う学問であり、固体物理学と重なる部分が多い。さらに固体化学の領域もこれらの学問と重なるが、特に新しい物質の開発(化学合成)に重点が置かれている。 今まで知られている最も軽い固体はエアロゲルであり、そのうち最も軽いものでは密度は約 1.9 mg/cm3 と水の密度の530分の1程度である。. 電気伝導(でんきでんどう、electrical conduction)は、電場(電界)を印加された物質中の荷電粒子を加速することによる電荷の移動現象、すなわち電流が流れるという現象。 電荷担体は主として電子であるが、イオンや正孔などもこれに該当する。荷電粒子の加速には抵抗力が働き、これを電気抵抗という。抵抗の主な原因として、格子振動や不純物などによる散乱が挙げられる。この加速と抵抗は、最終的には釣り合うことになる。.

固体と電気伝導間の類似点

固体と電気伝導は(ユニオンペディアに)共通で13ものを持っています: 半導体イオン絶縁体熱振動物性物理学超伝導自由電子電子電荷担体電気伝導率電流格子振動正孔

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

半導体と固体 · 半導体と電気伝導 · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

イオンと固体 · イオンと電気伝導 · 続きを見る »

絶縁体

絶縁体(ぜつえんたい、insulator)は、電気あるいは熱を通しにくい性質を持つ物質の総称である。.

固体と絶縁体 · 絶縁体と電気伝導 · 続きを見る »

熱振動

熱振動(ねつしんどう、Thermal vibration)は、原子の振動のこと。分子や固体中の原子は運動エネルギーを持っていて、基準となる位置を中心に振動運動をしている。結晶格子上の原子の熱振動は特に格子振動とよばれる。 温度が高くなるほど振動の振幅は大きくなる。絶対零度であっても、不確定性原理から原子の振動は止まっていない(零点振動)。 なお、類似した言葉に熱運動(thermal motion) がある。こちらは微小な粒子がするランダムな運動で、ブラウン運動の原因ともなる。熱運動については熱の記事を参照。.

固体と熱振動 · 熱振動と電気伝導 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

固体と物性物理学 · 物性物理学と電気伝導 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

固体と超伝導 · 超伝導と電気伝導 · 続きを見る »

自由電子

自由電子(じゆうでんし, free electron)とはポテンシャルがいたるところでゼロ、つまり何ら束縛を受けていない電子のこと。電子気体(フェルミ気体)とも呼ばれることがある。この自由電子をモデルとしたものを自由電子モデル(自由電子模型、Free electron model)と言う。現実の電子系について、それらが自由電子であると仮定する近似を自由電子近似と言う。 特に金属の場合は、伝導電子と同じ意味で自由電子という言葉が用いられる。金属内部の自由電子は、電気伝導や熱伝導を担う。 実際には通常の金属においても、伝導電子はごく弱くはあるが相互作用を受けている。強く束縛を受ける伝導電子などには適用できず、電子同士の多体相互作用も無視している。自由電子として扱うのは一種の理想化である。.

固体と自由電子 · 自由電子と電気伝導 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

固体と電子 · 電子と電気伝導 · 続きを見る »

電荷担体

電荷担体または電荷キャリア(charge carrier)とは、物理学において電荷を運ぶ自由な粒子を指し、特に電気伝導体における電流を担う粒子を指す。例えば、電子やイオンがある。 金属では、伝導電子が電荷担体となる。各原子の外側の1個または2個の価電子は金属の結晶構造の中を自由に移動できる。この自由電子の雲をフェルミ気体という。 塩水のような電解液では、陽イオンと陰イオンが電荷担体となる。同様にイオン性固体が融解した液体においても、陽イオンと陰イオンが電荷担体となる(例えば、ホール・エルー法を参照)。 電弧のようなプラズマでは、電子とイオン化した気体の陽イオン、さらには電極が蒸発した素材などが電荷担体となる。電極の気化は真空でも起きるが、電弧は真空中では存在しえない。その場合は気化した電極が低圧の気体となって電弧を生じるための電荷担体となっている。 真空管などの真空中では、自由電子が電荷担体となる。 半導体では、伝導電子と正孔(ホール)が電荷担体となる。正孔とは価電子帯の空席になっている部分を粒子のように移動するものと捉えた見方であり、正の電荷を担う。N型半導体では伝導電子、P型半導体では正孔が電荷担体(多数キャリア)となる。pn接合にみられる空乏層には電荷担体はほとんどない。.

固体と電荷担体 · 電気伝導と電荷担体 · 続きを見る »

電気伝導率

電気伝導率(でんきでんどうりつ、electrical conductivity)とは、物質中における電気伝導のしやすさを表す物性量である。導電率(どうでんりつ)や電気伝導度(でんきでんどうど)とも呼ばれる。理学系では「電気伝導率」、工学系では「導電率」と呼ばれる傾向がある。また、『学術用語集』では「電気伝導率」が多く、次いで「電気伝導度」である。 農学分野において肥料濃度の目安として用いられるが、この場合は英語の頭文字をとり、「EC濃度」もしくは単に「EC」と呼ぶことが多い。 なお、英語の は電気伝導度と訳されることがあるが、標準的な用語はコンダクタンスである。 電気伝導率は物質ごとに値が異なる物性量である。金属の電気伝導率は非常に大きいが水晶などの絶縁体では電気伝導率は非常に小さい。例えば、金属である銀は銀の電気伝導率は であるが、ガラスでは S/m から S/m である。.

固体と電気伝導率 · 電気伝導と電気伝導率 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

固体と電流 · 電気伝導と電流 · 続きを見る »

格子振動

格子振動(こうししんどう、英語:lattice vibration)は、結晶中の原子(格子)の振動のこと。振動の駆動力は熱であるが、絶対零度においても、不確定性原理から原子(格子)は振動している(零点振動)。 格子振動は、熱伝導の原因の一つであり、比熱とも関係が深い(→デバイ比熱)、また格子振動によって電子が散乱される(→電気伝導に影響)。 格子振動は、従来型の超伝導と深く関わっている(→BCS理論)。 量子化された格子振動がフォノン。 振動という意味では、単独の原子や、分子、クラスター、表面などでの各原子も振動していて、これらを量子化したものもフォノンである。.

固体と格子振動 · 格子振動と電気伝導 · 続きを見る »

正孔

正孔(せいこう)は、ホール(Electron hole または単にhole)ともいい、物性物理学の用語。半導体(または絶縁体)において、(本来は電子で満たされているべき)価電子帯の電子が不足した状態を表す。たとえば光や熱などで価電子が伝導帯側に遷移することによって、価電子帯の電子が不足した状態ができる。この電子の不足によってできた孔(相対的に正の電荷を持っているように見える)が正孔(ホール)である。 半導体結晶中においては、周囲の価電子が次々と正孔に落ち込み別の場所に新たな正孔が生じる、という過程を順次繰り返すことで結晶内を動き回ることができ、あたかも「正の電荷をもった電子」のように振舞うとともに電気伝導性に寄与する。なお、周囲の価電子ではなく、伝導電子(自由電子)が正孔に落ち込む場合には、伝導電子と価電子の間のエネルギー準位の差に相当するエネルギーを熱や光として放出し、電流の担体(通常キャリアと呼ぶ)としての存在は消滅する。このことをキャリアの再結合と呼ぶ。 正孔は、伝導電子と同様に、電荷担体として振舞うことができる。正孔による電気伝導性をp型という。半導体にアクセプターをドーピングすると、価電子が熱エネルギーによってアクセプタ準位に遷移し、正孔の濃度が大きくなる。また伝導電子の濃度に対して正孔の濃度が優越する半導体をp型半導体と呼ぶ。 一般に正孔のドリフト移動度(あるいは単に移動度)は自由電子のそれより小さく、シリコン結晶中では電子のおよそ1/3になる。なお、これによって決まるドリフト速度は個々の電子や正孔の持つ速度ではなく、平均の速度であることに注意が必要である。 価電子帯の頂上ではE-k空間上で形状の異なる複数のバンドが縮退しており、それに対応して正孔のバンドも有効質量の異なる重い正孔(heavy hole)と軽い正孔(light hole)のバンドに分かれる。またシリコンなどスピン軌道相互作用が小さい元素においてはスピン軌道スプリットオフバンド(スピン分裂バンド)もエネルギー的に近く(Δ.

固体と正孔 · 正孔と電気伝導 · 続きを見る »

上記のリストは以下の質問に答えます

固体と電気伝導の間の比較

電気伝導が71を有している固体は、256の関係を有しています。 彼らは一般的な13で持っているように、ジャカード指数は3.98%です = 13 / (256 + 71)。

参考文献

この記事では、固体と電気伝導との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »