ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

可解群と対称群

ショートカット: 違い類似点ジャカード類似性係数参考文献

可解群と対称群の違い

可解群 vs. 対称群

数学、特に群論の分野において、可解群(かかいぐん、solvable group, soluble group、Auflösbare Gruppe)は、アーベル群から群の拡大を用いて構成できる群のことである。つまり、可解群は導来列が自明な群で終わるような群のことである。 歴史的には、「可解」という語はガロア理論による5次以上の一般の方程式は代数的に解けないこと(アーベル–ルフィニの定理)の証明から来ている。特に、標数0の体上の代数方程式が根号を用いて解けるのは対応するガロア群が可解群であるとき、およびそのときに限る。. 対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

可解群と対称群間の類似点

可解群と対称群は(ユニオンペディアに)共通で18ものを持っています: 半直積単純群可換体同型写像多項式対称群交代群交換子部分群ガロア理論ガロア群シローの定理群作用群論輪積部分群P-群標数正規部分群

半直積

群論において、群の半直積(はんちょくせき、semidirect product)とは、ふたつの群から新たな群を作り出す方法の一種。 群の直積の一般化であり、通常の直積をその特別な場合として含む。.

半直積と可解群 · 半直積と対称群 · 続きを見る »

単純群

数学において、単純群 (simple group)とは、自明でない正規部分群 (それ自身と自明群 (単位群) 以外の正規部分群) を持たず、またそれ自身も自明群ではない群である。単純群は自明でない正規部分群を持たないので当然直既約群であるが、直既約群は必ずしも単純群ではない (下の例参照)。 群に主組成列が存在すれば、有限個の直既約群の直積に一意的に分解される (クルル・レマク・シュミットの定理)。しかし、上記の理由により、必ずしも有限個の単純群の直積に分解されるとは限らない。もし、群が有限個の単純群の直積に分解可能であれば、その群は完全可約群または半単純群であるという。また、その場合に限って、主組成列の長さと直積の成分である単純群の個数は一致する浅野啓三・永尾汎 『群論』、岩波書店〈岩波全書〉、1965年、pp102-104。。.

単純群と可解群 · 単純群と対称群 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

可換体と可解群 · 可換体と対称群 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

可解群と同型写像 · 同型写像と対称群 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

可解群と多項式 · 多項式と対称群 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

可解群と対称群 · 対称群と対称群 · 続きを見る »

交代群

交代群(こうたいぐん、alternating group, Alternierende Gruppe)とは、有限集合の偶置換全体がなす群である。集合 上の交代群は n 次の交代群、もしくは n 文字の交代群 (the alternating group on n letters) と呼ばれ、An もしくは Alt(n), \mathfrak_n という記号で表す。これは n 変数の交代式を不変とするような変数の置換がなす群と思ってもよい。 例として、4つの元からなる集合 の交代群 A4 は以下のようになる。A4.

交代群と可解群 · 交代群と対称群 · 続きを見る »

交換子部分群

数学、特に抽象代数学における群の交換子部分群(こうかんしぶぶんぐん、commutator subgroup)あるいは導来部分群(どうらいぶぶんぐん、derived subgroup)は、その群の交換子全体で生成される部分群である。 交換子部分群は、それによる商がアーベル群となるような正規部分群のうちで最小のものであるという点で重要である。すなわち、 がアーベル群となる必要十分条件は正規部分群 が交換子部分群を含むことである。ゆえにある意味で交換子部分群は、群がアーベル群からどれくらい離れているかを測るものということができる。つまり、交換子部分群が大きいほど、その群はアーベル群から遠くなる。.

交換子部分群と可解群 · 交換子部分群と対称群 · 続きを見る »

ガロア理論

ア理論(ガロアりろん、Galois theory)は、代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する理論。1830年代のエヴァリスト・ガロアによる代数方程式の冪根による可解性などの研究が由来。ガロアは当時、まだ確立されていなかった群や体の考えを方程式の研究に用いていた。 ガロア理論によれば、“ガロア拡大”と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。.

ガロア理論と可解群 · ガロア理論と対称群 · 続きを見る »

ガロア群

ア群(英:Galois Group)とは、代数方程式または体の拡大から定義される群のことである。発見者であるフランスの数学者エヴァリスト・ガロアから命名された。これらの群を用い方程式などの数学的対象について研究する分野をガロア理論と呼ぶ。.

ガロア群と可解群 · ガロア群と対称群 · 続きを見る »

シローの定理

数学、とくに有限群論において、シローの定理 (Sylow theorems) は、ノルウェーの数学者ルートヴィヒ・シロー (Ludwig Sylow) (1872) にちなんで名づけられている定理の集まりであり、与えられた有限群がもつ固定された位数の部分群の個数についての詳細な情報を与える。シローの定理は有限群論の基本的な部分をなし、有限単純群の分類における非常に重要な応用を持つ。 素数 p に対し、群 G のシロー p-部分群(あるいは p-シロー部分群)とは、G の極大 p-部分群である、つまり、''p''-群である(任意の元の位数が p の冪である)であるような G の部分群であって、G の他のどんな p-部分群の真部分群でないようなものである。与えられた素数 p に対するすべてのシロー p 部分群の集合を Sylp(G) と書くことがある。 シローの定理はラグランジュの定理の部分的な逆を主張する。ラグランジュの定理は任意の有限群 G に対して G のすべての部分群の位数(元の個数)は G の位数を割り切るというものであり、シローの定理は有限群 G の位数の任意の素因数 p に対して G のシロー p 部分群が存在するというものである。有限群 G のシロー p 部分群の位数は、n を G の位数における p の重複度として、pn であり、また位数 pn の任意の部分群は G のシロー p 部分群である。(与えられた素数 p に対して)群のシロー p-部分群は互いに共役である。与えられた素数 p に対して群のシロー p-部分群の個数は mod p で 1 と合同である。.

シローの定理と可解群 · シローの定理と対称群 · 続きを見る »

群作用

数学における群作用(ぐんさよう、group action)は、群を用いて物体の対称性を記述する方法である。.

可解群と群作用 · 対称群と群作用 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

可解群と群論 · 対称群と群論 · 続きを見る »

輪積

数学の群論における輪積(りんせき、wreath product; リース積)は、半直積をもとにして定義される二つの群の特殊化された積である。置換群の分類においてリース積は重要な道具であり、またリース積から群の興味深い例がさまざまに構成される。 二つの群 A および H が与えられたとき、それら輪積には非制限輪積 (あるいは) と制限輪積 の二種類が考えられる。さらに ''H''-作用を持つ集合 Ω が与えられれば、 あるいは で表されるそれぞれの輪積の一般化が存在する。.

可解群と輪積 · 対称群と輪積 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

可解群と部分群 · 対称群と部分群 · 続きを見る »

P-群

数学の特に群論において、与えられた素数 p に対する p-準素群(ピーじゅんそぐん、p-primary group)あるいは、p-群(ピーぐん、p-group)もしくは準素群(じゅんそぐん、primary group)とは、任意の元の位数が p の冪になっているようなねじれ群をいう。すなわち p-群において、各元 g は非負整数 n を適当に選べば g の pn-乗が単位元に一致する。 有限群の場合には、それが p-群であることと、その群の位数 (つまり元の個数) が p の冪であることとは同値になる。以下本項においては有限 p-群に関して述べる。無限アーベル p -群の例についてはプリューファー群の項を、また無限単純 p -群の例についてはの項を参照。.

P-群と可解群 · P-群と対称群 · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

可解群と標数 · 対称群と標数 · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

可解群と正規部分群 · 対称群と正規部分群 · 続きを見る »

上記のリストは以下の質問に答えます

可解群と対称群の間の比較

対称群が76を有している可解群は、46の関係を有しています。 彼らは一般的な18で持っているように、ジャカード指数は14.75%です = 18 / (46 + 76)。

参考文献

この記事では、可解群と対称群との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »