ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

古典電磁気学と場の量子論

ショートカット: 違い類似点ジャカード類似性係数参考文献

古典電磁気学と場の量子論の違い

古典電磁気学 vs. 場の量子論

古典電磁気学または古典電気力学は、電荷と電流の間の電磁気力について研究する理論物理学の一分野である。対応する長さや電磁場の強さが量子力学的効果に影響されないほど十分大きければ、電磁現象をうまく説明できる(量子電磁力学参照)。古典電磁気学の基礎物理学的側面は、『ファインマン物理学』、パノフスキーらの『電磁気学』、『ジャクソン電磁気学』などで紹介されている。 電磁気学は19世紀に発展したが、その中でも特にジェームズ・クラーク・マクスウェルが重要な役割を果たした。電磁気学の歴史については、パウリの『相対性理論』、数学者E・T・ホイッタカーの著書、A・パイスのアインシュタインの伝記などに詳しい。 Ribarič and Šušteršič (1990)では、1903年から1989年までの約240の文献を参照・研究し、古典電気力学の分野で現代においても未解決の1ダースほどの問題を提示している。ジャクソンが古典電気力学最大の問題としたのは、基本方程式について2つの極端な場合においてしか解が得られていないという点である。すなわち、電荷または電流が与えられ、そこから電磁場を計算して求める場合と、外部の電磁場が与えられ、荷電粒子や電流の動きを計算して求める場合である。時折、この2つを組み合わせることもある。しかし、その場合の取り扱いは段階的に行われる。まず、外部電磁場内の荷電粒子の動きをそれ自身の電磁放射を無視して計算し、次いでその軌道に基づいてその電荷の電磁放射を計算する。このような電気力学における問題の扱い方は近似的な妥当性しか持ち得ないことは明らかである。電荷と電流の相互作用やそれらが放射する電磁場は無視することができず、結果としてそうした電気力学系についての我々の理解は限定的なものとなっている。1世紀に渡る努力にもかかわらず、広く受け入れられた荷電粒子の古典的運動方程式は未だに存在しないし、関連する実験データも存在しない。. 場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

古典電磁気学と場の量子論間の類似点

古典電磁気学と場の量子論は(ユニオンペディアに)共通で5ものを持っています: ヴォルフガング・パウリジェームズ・クラーク・マクスウェル素粒子物理学量子力学量子電磁力学

ヴォルフガング・パウリ

ヴォルフガング・エルンスト・パウリ(Wolfgang Ernst Pauli, 1900年4月25日 - 1958年12月15日)はオーストリア生まれのスイスの物理学者。スピンの理論や、現代化学の基礎となっているパウリの排他律の発見などの業績で知られる。 アインシュタインの推薦により、1945年に「1925年に行われた排他律、またはパウリの原理と呼ばれる新たな自然法則の発見を通じた重要な貢献」に対してノーベル物理学賞を受賞した。.

ヴォルフガング・パウリと古典電磁気学 · ヴォルフガング・パウリと場の量子論 · 続きを見る »

ジェームズ・クラーク・マクスウェル

ェームズ・クラーク・マクスウェル(英:James Clerk Maxwell、1831年6月13日 - 1879年11月5日)は、イギリスの理論物理学者である。姓はマックスウェルと表記されることもある。 マイケル・ファラデーによる電磁場理論をもとに、1864年にマクスウェルの方程式を導いて古典電磁気学を確立した。さらに電磁波の存在を理論的に予想しその伝播速度が光の速度と同じであること、および横波であることを示した。これらの業績から電磁気学の最も偉大な学者の一人とされる。また、土星の環や気体分子運動論・熱力学・統計力学などの研究でも知られている。.

ジェームズ・クラーク・マクスウェルと古典電磁気学 · ジェームズ・クラーク・マクスウェルと場の量子論 · 続きを見る »

素粒子物理学

素粒子物理学(そりゅうしぶつりがく、particle physics)は、物質の最も基本的な構成要素(素粒子)とその運動法則を研究対象とする物理学の一分野である。 大別して素粒子論(素粒子理論)と素粒子実験からなる。また実証主義、還元主義に則って実験的に素粒子を研究する体系を高エネルギー物理学と呼ぶ。 粒子加速器を用い、高エネルギー粒子の衝突反応を観測することで、主に研究が進められることから、そう命名された。しかしながら、現在、実験で必要とされる衝突エネルギーはテラ電子ボルトの領域となり、加速器の規模が非常に大きくなってきている。将来的に建設が検討されている国際リニアコライダーも建設費用は一兆円程度になることが予想されている。また、近年においても、伝統的に非加速器による素粒子物理学の実験的研究が模索されている。 何をもって素粒子とするのかは時代とともに変化してきており、立場によっても違い得るが標準理論の枠組みにおいては、物質粒子として6種類のクォークと6種類のレプトン、力を媒介する粒子としてグルーオン、光子、ウィークボソン、重力子(グラビトン)、さらにヒッグス粒子等が素粒子だと考えられている。超弦理論においては素粒子はすべて弦(ひもともいう)の振動として扱われる。.

古典電磁気学と素粒子物理学 · 場の量子論と素粒子物理学 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

古典電磁気学と量子力学 · 場の量子論と量子力学 · 続きを見る »

量子電磁力学

量子電磁力学(りょうしでんじりきがく、, QED)とは、電子を始めとする荷電粒子間の電磁相互作用を量子論的に記述する場の量子論である。量子電気力学と訳される場合もある。.

古典電磁気学と量子電磁力学 · 場の量子論と量子電磁力学 · 続きを見る »

上記のリストは以下の質問に答えます

古典電磁気学と場の量子論の間の比較

場の量子論が96を有している古典電磁気学は、42の関係を有しています。 彼らは一般的な5で持っているように、ジャカード指数は3.62%です = 5 / (42 + 96)。

参考文献

この記事では、古典電磁気学と場の量子論との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »