ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

原子爆弾と連鎖反応 (核分裂)

ショートカット: 違い類似点ジャカード類似性係数参考文献

原子爆弾と連鎖反応 (核分裂)の違い

原子爆弾 vs. 連鎖反応 (核分裂)

長崎に投下された原子爆弾のキノコ雲1945年8月9日 広島型原爆(リトルボーイ)による被害者の一人。(1945年10月。日本赤十字病院において) 原子爆弾(げんしばくだん、原爆、atomic bomb)は、ウランやプルトニウムなどの元素の原子核が起こす核分裂反応を使用した核爆弾で、初めて実用化された核兵器でもある。原子爆弾は、核爆発装置に含まれる。水素爆弾を含めて「原水爆」とも呼ばれる。 核兵器は通常兵器と比較して威力が極めて大きいため、大量破壊兵器として核不拡散条約や部分的核実験禁止条約などで規制されており、核廃絶を求める主張もある。. 連鎖反応(れんさはんのう、nuclear chain reaction)とは、核分裂性物質が中性子を吸収することで核分裂反応を起こすと同時に新たな中性子が飛び出し、さらに別の核分裂反応を引き起こして、単位時間当たりの反応回数が一定もしくは指数関数的に増加する状態である。 十分に多量(臨界量以上)の核分裂性物質の中で、制御されない状態の下で連鎖反応が起きると、エネルギーが爆発的に放出される。これが核兵器の動作原理になっている。連鎖反応は十分に制御された状態でエネルギー源としても用いられる(原子炉など)。 いくつかの核分裂反応で生じる中性子数とエネルギーの平均値は以下の通りである。.

原子爆弾と連鎖反応 (核分裂)間の類似点

原子爆弾と連鎖反応 (核分裂)は(ユニオンペディアに)共通で20ものを持っています: 原子炉原子核中性子マンハッタン計画プルトニウムベリリウムウランウラン235ウラン238エネルギー結合エネルギー運動エネルギー臨界状態臨界量 (原子力)自発核分裂連鎖反応 (核分裂)核分裂反応核分裂性物質核兵器1942年

原子炉

建設中の沸騰水型原子炉(浜岡原子力発電所)国土航空写真 原子力工学における原子炉(げんしろ、nuclear reactor)とは、制御された核分裂連鎖反応を維持することができるよう核燃料などを配置した装置を言う。.

原子炉と原子爆弾 · 原子炉と連鎖反応 (核分裂) · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

原子核と原子爆弾 · 原子核と連鎖反応 (核分裂) · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

中性子と原子爆弾 · 中性子と連鎖反応 (核分裂) · 続きを見る »

マンハッタン計画

マンハッタン計画(マンハッタンけいかく、Manhattan Project)は、第二次世界大戦中、ナチス・ドイツなどの一部枢軸国の原子爆弾開発に焦ったアメリカ、イギリス、カナダが原子爆弾開発・製造のために、科学者、技術者を総動員した計画である。計画は成功し、原子爆弾が製造され、1945年7月16日世界で初めて原爆実験を実施した。さらに、広島に同年8月6日・長崎に8月9日に投下、合計数十万人が犠牲になり、また戦争後の冷戦構造を生み出すきっかけともなった。 科学部門のリーダーはロバート・オッペンハイマーがあたった。大規模な計画を効率的に運営するために管理工学が使用された。 なお、計画の名は、当初の本部がニューヨーク・マンハッタンに置かれていたため、一般に軍が工区名をつける際のやり方に倣って「マンハッタン・プロジェクト」とした。最初は「代用物質開発研究所 (Laboratory for the Development of Substitute Materials)」と命名されたが、これを知った(後にプロジェクトを牽引することになる)レズリー・グローヴスが、その名称は好奇心を掻き立てるだけであるとして新たに提案したのが採用されたものである。.

マンハッタン計画と原子爆弾 · マンハッタン計画と連鎖反応 (核分裂) · 続きを見る »

プルトニウム

プルトニウム(英Plutonium)は、原子番号94の元素である。元素記号は Pu。アクチノイド元素の一つ。.

プルトニウムと原子爆弾 · プルトニウムと連鎖反応 (核分裂) · 続きを見る »

ベリリウム

ベリリウム(beryllium, beryllium )は原子番号 4 の元素である。元素記号は Be。第2族元素に属し、原子量は 9.01218。ベリリウムは緑柱石などの鉱物から産出される。緑柱石は不純物に由来する色の違いによってアクアマリンやエメラルドなどと呼ばれ、宝石としても用いられる。常温常圧で安定した結晶構造は六方最密充填構造(HCP)である。単体は銀白色の金属で、空気中では表面に酸化被膜が生成され安定に存在できる。モース硬度は6から7を示し、硬く、常温では脆いが、高温になると展延性が増す。酸にもアルカリにも溶解する。ベリリウムの安定同位体は恒星の元素合成においては生成されず、宇宙線による核破砕によって炭素や窒素などのより重い元素から生成される。 ベリリウムは主に合金の硬化剤として利用され、その代表的なものにベリリウム銅合金がある。また、非常に強い曲げ強さ、熱的安定性および熱伝導率の高さ、金属としては比較的低い密度などの物理的性質を利用して、高速航空機やミサイル、宇宙船、通信衛星などの軍事産業や航空宇宙産業において構造部材として用いられる。ベリリウムは低密度かつ原子量が小さいためX線やその他電離放射線に対して透過性を示し、その特性を利用してX線装置や粒子物理学の試験におけるX線透過窓として用いられる。 ベリリウムを含有する塵は人体へと吸入されることによって毒性を示すため、その商業利用には技術的な難点がある。ベリリウムは細胞組織に対して腐食性であり、慢性ベリリウム症と呼ばれる致死性の慢性疾患を引き起こす。.

ベリリウムと原子爆弾 · ベリリウムと連鎖反応 (核分裂) · 続きを見る »

ウラン

ウラン(Uran, uranium )とは、原子番号92の元素。元素記号は U。ウラニウムの名でも知られるが、これは金属元素を意味するラテン語の派生名詞中性語尾 -ium を付けた形である。なお、ウランという名称は、同時期に発見された天王星 (Uranus) の名に由来している。.

ウランと原子爆弾 · ウランと連鎖反応 (核分裂) · 続きを見る »

ウラン235

ウラン235(uranium-235, U)はウランの同位体の一つ。1935年にArthur Jeffrey Dempsterにより発見された。ウラン238とは違いウラン235は核分裂の連鎖反応をおこす。ウラン235の原子核は中性子を吸収すると2つに分裂する。また、この際に2個ないし3個の中性子を出し、それによってさらに反応が続く。原子力発電では多量の中性子を吸収するホウ素、カドミウム、ハフニウムなどでできた制御棒で反応を制御している。核兵器では反応は制御されず、大量のエネルギーが一気に解放され核爆発を起こす。 ウラン235の核分裂で発生するエネルギーは一原子当たりでは200 MeVであり、1モル当たりでは18 TJである。 自然に存在するウランの内ウラン235は0.72パーセントであり長倉三郎ほか編、『』、岩波書店、1998年、項目「ウラン」より。ISBN 4-00-080090-6、残りの大部分はウラン238である。この濃度では軽水炉で反応を持続させるのには不十分であり、濃縮ウランが使われる。一方、重水炉では濃縮していないウランでも使用できる。核爆発を起こさせるためには90パーセント程度の純度が求められる。.

ウラン235と原子爆弾 · ウラン235と連鎖反応 (核分裂) · 続きを見る »

ウラン238

ウラン238(uranium-238、U)とはウランの同位体の一つ。ウラン238は中性子が衝突するとウラン239となる。ウラン239は不安定でβ-崩壊しネプツニウム239になり、さらにβ-崩壊(半減期2.355日)しプルトニウム239となる。 天然のウランの99.284%がウラン238である。半減期は4.468 × 109年(44億6800万年)。劣化ウランはほとんどがウラン238である。濃縮ウランは天然ウランを濃縮して、よりウラン235の濃度を高めたものである。 ウラン238は核兵器や原子力発電と関係がある。.

ウラン238と原子爆弾 · ウラン238と連鎖反応 (核分裂) · 続きを見る »

エネルギー

ネルギー(、)とは、.

エネルギーと原子爆弾 · エネルギーと連鎖反応 (核分裂) · 続きを見る »

結合エネルギー

結合エネルギー(けつごうエネルギー)とは、互いに引き合う複数の要素からなる系において、その系がひとところに寄り集まって存在する状態と、粒子がばらばらに存在する状態との間での、ポテンシャルエネルギーの差のこと。結合エネルギーが大きいほど、その結合は強固で安定であると言える。束縛エネルギーとも言う。 本来、保存力によって結合する系ならば、どのような系に対しても考えることが出来るが、この語が良く用いられるのは、化学分野における分子中の原子間結合の場合と、原子核の核子間相互作用の場合である。 英語表記は、bond energy や binding energy 等があるが、前者は主に化学分野において、後者は主に原子核物理学分野において用いられる。.

原子爆弾と結合エネルギー · 結合エネルギーと連鎖反応 (核分裂) · 続きを見る »

運動エネルギー

運動エネルギー(うんどうエネルギー、)は、物体の運動に伴うエネルギーである。物体の速度を変化させる際に必要な仕事である。英語の は、「運動」を意味するギリシア語の (kinesis)に由来する。この用語は1850年頃ウィリアム・トムソンによって初めて用いられた。.

原子爆弾と運動エネルギー · 連鎖反応 (核分裂)と運動エネルギー · 続きを見る »

臨界状態

臨界状態(りんかいじょうたい)とは、原子力分野においては、原子炉などで、原子核分裂の連鎖反応が一定の割合で継続している状態のことをいう。 以下も原子力分野における臨界状態についての解説である。.

原子爆弾と臨界状態 · 臨界状態と連鎖反応 (核分裂) · 続きを見る »

臨界量 (原子力)

臨界量(りんかいりょう)は、原子核分裂の連鎖反応が持続する核分裂物質の最少の質量を指す。.

原子爆弾と臨界量 (原子力) · 臨界量 (原子力)と連鎖反応 (核分裂) · 続きを見る »

自発核分裂

自発核分裂(じはつかくぶんれつ、spontaneous fission、SF)とは質量数が非常に大きな同位体に特徴的に見られる放射性崩壊の一種である。自発核分裂は理論的には質量が100amu程度(ルテニウム付近)を超えるどのような原子核にも起こりうるが、エネルギー的に実際に自発核分裂が可能なのは原子量が約230amu(トリウム付近)以上の原子に限られる。 ウランとトリウムの場合、自発核分裂は起きないわけではないが放射性崩壊のモードの主たる過程ではなく、これらの元素を含む試料の放射能を測る際に崩壊の分岐比を正確に考える必要があるような場合を除いて、通常は無視される。自発核分裂が起こる条件は以下の式で近似的に与えられる。 ここで Z は原子番号、A は質量数である。 式の表すように、自発核分裂の部分半減期は陽子数Zが増大すると急激に減少する。例えば陽子数92のウランでは自発核分裂の部分半減期が1016年になるのに対して、陽子数100のフェルミウムでは部分半減期は1年前後である。このように、自発核分裂が最も起こりやすい元素はラザホージウムのような超アクチノイド元素である。 自発核分裂はその名の通り原子核分裂反応と全く同じ物理過程であるが、中性子やその他の粒子による衝撃を受けることなく分裂が始まる点が通常の核分裂と異なっている。陽子が多く中性子があまり多くない核種では陽子同士に働くクーロン力の影響で原子核全体が不安定な状態にある。このような原子核が量子力学的な揺らぎによって自発的に核分裂を引き起こす過程が自発核分裂である。 自発核分裂では他の全ての核分裂反応と同様に中性子が放出される。そのため、臨界量以上の核分裂性物質が存在する場合には自発核分裂が核分裂の連鎖反応を引き起こしうる。また、自発核分裂が崩壊モードの中で無視できない確率で起こる放射性同位元素は中性子線源として用いられる。この目的ではカリホルニウム252(半減期2.645年、自発核分裂分岐比 3.09%)がしばしば用いられている。このような線源から放出される中性子線は、航空貨物に隠された爆発物の検査や建設業界での土壌の水分含有量の測定、サイロに貯蔵された物資の湿度の測定、その他様々な用途に使われている。 自発核分裂による分裂性原子核自身の数の減少が無視できる範囲では、ベクレルが一定となるため自発核分裂は平均値が等しい指数到着であり、ポアソン過程と見なすことができる。すなわち、非常に短い時間尺度では、自発核分裂の確率は着目する時間の長さに比例する。 ウランを含む鉱物では、ウラン238の自発核分裂によって生じた分裂後の原子核が結晶構造の中に反跳した飛跡を残す。これらの飛跡はフィッション・トラックと呼ばれ、フィッション・トラック法と呼ばれる放射年代測定に利用される。 超重元素の探索において、ある元素を合成したと認められる基準は、当該原子核群の少なくとも一部が既知の原子核に崩壊することとされている。それらが全て自発核分裂してしまった場合は、その原子核を合成したとはみなされない。.

原子爆弾と自発核分裂 · 自発核分裂と連鎖反応 (核分裂) · 続きを見る »

連鎖反応 (核分裂)

連鎖反応(れんさはんのう、nuclear chain reaction)とは、核分裂性物質が中性子を吸収することで核分裂反応を起こすと同時に新たな中性子が飛び出し、さらに別の核分裂反応を引き起こして、単位時間当たりの反応回数が一定もしくは指数関数的に増加する状態である。 十分に多量(臨界量以上)の核分裂性物質の中で、制御されない状態の下で連鎖反応が起きると、エネルギーが爆発的に放出される。これが核兵器の動作原理になっている。連鎖反応は十分に制御された状態でエネルギー源としても用いられる(原子炉など)。 いくつかの核分裂反応で生じる中性子数とエネルギーの平均値は以下の通りである。.

原子爆弾と連鎖反応 (核分裂) · 連鎖反応 (核分裂)と連鎖反応 (核分裂) · 続きを見る »

核分裂反応

核分裂反応(かくぶんれつはんのう、nuclear fission)とは、不安定核(重い原子核や陽子過剰核、中性子過剰核など)が分裂してより軽い元素を二つ以上作る反応のことを指す。オットー・ハーンとフリッツ・シュトラスマンらが天然ウランに低速中性子(slow neutron)を照射し、反応生成物にバリウムの同位体を見出したことにより発見され、リーゼ・マイトナーとオットー・ロベルト・フリッシュらが核分裂反応であると解釈し、fission(核分裂)と命名した。.

原子爆弾と核分裂反応 · 核分裂反応と連鎖反応 (核分裂) · 続きを見る »

核分裂性物質

核分裂性物質(かくぶんれつせいぶっしつ、fissile material)とは、熱中性子との相互作用によって核分裂を起こす物質の総称を言う。主にウラン235 235U とプルトニウム239 239Pu のことを指す。.

原子爆弾と核分裂性物質 · 核分裂性物質と連鎖反応 (核分裂) · 続きを見る »

核兵器

核兵器(かくへいき、nuclear weapon)は、核分裂の連鎖反応、または核融合反応で放出される膨大なエネルギーを利用して、爆風、熱放射や放射線効果などの作用を破壊に用いる兵器の総称。原子爆弾、水素爆弾、中性子爆弾等の核爆弾(核弾頭)とそれを運搬する運搬兵器で構成されている。 核兵器は生物兵器、化学兵器と合わせてNBC兵器(又はABC兵器)と呼ばれる大量破壊兵器である。一部放射能兵器も含めて核兵器と称する場合があるが、厳密には放射能兵器を核兵器に分類するのは誤りである。 核兵器は、人類が開発した最も強力な兵器の一つであり、その爆発は一発で都市を壊滅させる事も可能である。そのような威力ゆえに、20世紀後半に配備数が増えるにつれ核戦争の脅威が想定されるようになり、単なる兵器としてだけではなく、国家の命運、人類の存亡にも影響するものとして、開発・配備への動きのみならず、規制・廃棄の動きなど様々な議論の対象となってきた。また、実戦使用されたのがアメリカ合衆国による、第二次世界大戦における二発(広島・長崎)のみであり、使用ではなく、主に配備による抑止力として、その意義が評価されている側面を持つ。 核兵器は核分裂を主とする原子爆弾と核融合を主とする水素爆弾の大きく二つに分類される。原子爆弾は大威力化に限界があり、水素爆弾の方が最大威力は大きくすることができる。また、兵器の形態としても、開発当初は大型航空爆弾のみであったが、プルトニウム型の場合高度な製造技術を必要とする反面、小型化が可能でありミサイルや魚雷の弾頭、砲弾までも様々なものが開発されている。.

原子爆弾と核兵器 · 核兵器と連鎖反応 (核分裂) · 続きを見る »

1942年

記載なし。

1942年と原子爆弾 · 1942年と連鎖反応 (核分裂) · 続きを見る »

上記のリストは以下の質問に答えます

原子爆弾と連鎖反応 (核分裂)の間の比較

連鎖反応 (核分裂)が63を有している原子爆弾は、193の関係を有しています。 彼らは一般的な20で持っているように、ジャカード指数は7.81%です = 20 / (193 + 63)。

参考文献

この記事では、原子爆弾と連鎖反応 (核分裂)との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »