ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

化学反応と反応速度論

ショートカット: 違い類似点ジャカード類似性係数参考文献

化学反応と反応速度論の違い

化学反応 vs. 反応速度論

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。. 反応速度論(はんのうそくどろん、chemical kinetics)とは反応進行度の時間変化(速度)に関する物理化学の一分野である。物体の速度を扱う力学との類推で、かつては化学動力学と呼ばれていた。反応速度論の目的は反応速度を解析することで、反応機構や化学反応の物理学的本質を解明することにあった。今日においては原子あるいは分子の微視的運動状態は、巨視的な反応速度解析に頼ることなく、量子化学などの理論に基づき計算化学的な手法で評価する分子動力学によって解明できるようになっている。それゆえ、今日の反応速度論は学問的真理の探求よりは、実際の化学反応を制御する場合の基礎論理として利用されている。 なお、反応速度の求め方については記事 反応速度に詳しい。.

化学反応と反応速度論間の類似点

化学反応と反応速度論は(ユニオンペディアに)共通で15ものを持っています: 加水分解反応速度化学化学反応化学平衡化学ポテンシャルモル濃度分子動力学法熱力学物理化学物質量計算化学量子化学自由エネルギー19世紀

加水分解

加水分解(かすいぶんかい、hydrolysis)とは、反応物に水が反応し、分解生成物が得られる反応のことである。このとき水分子 (H2O) は、生成物の上で H(プロトン成分)と OH(水酸化物成分)とに分割して取り込まれる。反応形式に従った分類により、加水分解にはいろいろな種類の反応が含まれる。 化合物ABが極性を持ち、Aが陽性、Bが陰性であるとき、ABが水と反応するとAはOHと結合し、BはHと結合する形式の反応が一般的である。 加水分解の逆反応は脱水縮合である。.

加水分解と化学反応 · 加水分解と反応速度論 · 続きを見る »

反応速度

反応速度(はんのうそくど、reaction rate)とは化学反応の反応物あるいは生成物に関する各成分量の時間変化率を表す物理量。通常、反応速度を表現する式は濃度のべき関数として表現される。.

化学反応と反応速度 · 反応速度と反応速度論 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

化学と化学反応 · 化学と反応速度論 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

化学反応と化学反応 · 化学反応と反応速度論 · 続きを見る »

化学平衡

化学平衡(かがくへいこう、chemical equilibrium)とは可逆反応において、順方向の反応と逆方向との反応速度が釣り合って反応物と生成物の組成比が巨視的に変化しないことをいう。.

化学反応と化学平衡 · 化学平衡と反応速度論 · 続きを見る »

化学ポテンシャル

化学ポテンシャル(かがくポテンシャル、)は熱力学で用いられる示強性状態量の一つである。 推奨される量記号は、μ(ミュー)である。 化学ポテンシャルはアメリカの化学者ウィラード・ギブズにより導入され、浸透圧や化学反応のようなマクロな物質量の移動が伴う現象で重要な量である。.

化学ポテンシャルと化学反応 · 化学ポテンシャルと反応速度論 · 続きを見る »

モル濃度

モル濃度(モルのうど、molar concentration)は濃度を表す方式の一つで、単位体積の溶液中の溶質の物質量である。モル濃度のSI単位は mol m−3(モル毎立方メートル)であるが、通常 mol dm−3(モル毎立方デシメートル)や mol L−1(モル毎リットル)の単位がよく用いられる。化学や生化学などでよく用いられる濃度表示法であるが、通常溶液の体積は温度に依存して変化するため熱力学では使われにくい。しかし、この問題は温度補正係数や質量モル濃度など温度が影響しない方法をとることにより解決される。 直近の国際機関JCGM 200:2012 (VIM3) の用語に従えば、これは、物質量濃度(.

モル濃度と化学反応 · モル濃度と反応速度論 · 続きを見る »

分子動力学法

表面への堆積。それぞれの円は単一原子の位置を示す。現在のシミュレーションにおいて用いられる実際の原子的相互作用は図中の2次元剛体球の相互作用よりも複雑である。 分子動力学法(ぶんしどうりきがくほう、molecular dynamics、MD法)は、原子ならびに分子の物理的な動きのコンピューターシミュレーション手法である。原子および分子はある時間の間相互作用することが許され、これによって原子の動的発展の光景が得られる。最も一般的なMD法では、原子および分子のトラクジェクトリは、相互作用する粒子の系についての古典力学におけるニュートンの運動方程式を数値的に解くことによって決定される。この系では粒子間の力およびポテンシャルエネルギーは原子間ポテンシャル(分子力学力場)によって定義される。MD法は元々は1950年代末に理論物理学分野で考え出されたが、今日では主に化学物理学、材料科学、生体分子のモデリングに適用されている。系の静的、動的安定構造や、動的過程(ダイナミクス)を解析する手法。 分子の系は莫大な数の粒子から構成されるため、このような複雑系の性質を解析的に探ることは不可能である。MDシミュレーションは 数値的手法を用いることによってこの問題を回避する。しかしながら、長いMDシミュレーションは数学的に悪条件であり、数値積分において累積誤差を生成してしまう。これはアルゴリズムとパラメータの適切な選択によって最小化することができるが、完全に取り除くことはできない。 エルゴード仮説に従う系では、単一の分子動力学シミュレーションの展開は系の巨視的熱力学的性質を決定するために使うことができる。エルゴード系の時間平均はミクロカノニカルアンサンブル(小正準集団)平均に対応する。MDは自然の力をアニメーションすることによって未来を予測する、原子スケールの分子の運動についての理解を可能にする「数による統計力学」や「ニュートン力学のラプラス的視点」とも称されている。 MDシミュレーションでは等温、定圧、等温・定圧、定エネルギー、定積、定ケミカルポテンシャル、グランドカノニカルといった様々なアンサンブル(統計集団)の計算が可能である。また、結合長や位置の固定など様々な拘束条件を付加することもできる。計算対象は、バルク、表面、界面、クラスターなど多様な系を扱える。 MD法で扱える系の規模としては、最大で数億原子からなる系の計算例がある。通常の計算規模は数百から数万原子(分子、粒子)程度である。 通常、ポテンシャル関数は、原子-原子の二体ポテンシャルを組み合わせて表現し、これを計算中に変更しない。そのため化学反応のように、原子間結合の生成・開裂を表現するには、何らかの追加の工夫が必要となる。また、ポテンシャルは経験的・半経験的なパラメータから求められる。 こうしたポテンシャル面の精度の問題を回避するため、ポテンシャル面を電子状態の第一原理計算から求める手法もある。このような方法は、第一原理分子動力学法〔量子(ab initio)分子動力学法〕と呼ばれる。この方法では、ポテンシャル面がより正確なものになるが、扱える原子数は格段に減る(スーパーコンピュータを利用しても、最大で約千個程度)。 また第一原理分子動力学法の多くは、電子状態が常に基底状態であることを前提としているものが多く、電子励起状態や電子状態間の非断熱遷移を含む現象の記述は、こうした手法であってもなお困難である。.

分子動力学法と化学反応 · 分子動力学法と反応速度論 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

化学反応と熱力学 · 反応速度論と熱力学 · 続きを見る »

物理化学

物理化学(ぶつりかがく、physical chemistry)とは、化学の対象である物質、あるいはその基本的な構成を成している化合物や分子などについて、物質の構造、物質の性質(=物性)、物質の反応を調べる知恵蔵2012 市村禎二郎 東京工業大学教授 執筆【物理化学】ために、物理学的な手法を用いて研究する領域に対する呼称。理論的な基礎として熱力学と量子力学、およびこれら2つをつなぐ統計力学を大きな柱とする。 化学は対象とする物質によって有機化学、無機化学などがあるが、物理化学でも対象によって有機物理化学、無機物理化学と呼び分けられている。 物理化学の中の分野としては以下のものがある。.

化学反応と物理化学 · 反応速度論と物理化学 · 続きを見る »

物質量

物質量(ぶっしつりょう、)は、物質の量を表す物理量のひとつ体積、質量、分子数、原子数などでも物質の量を表すことができる。である。物質を構成する要素粒子の個数をアボガドロ定数 (約 6.022×1023 mol-1) で割ったものに等しい。要素粒子()は物質の化学式で表される。普通は、分子性物質の場合は分子が要素粒子であり、イオン結晶であれば組成式で書かれるものが要素粒子であり、金属では原子が要素粒子である。 物質量は1971年に国際単位系 (SI) の7番目の基本量に定められた。表記する場合は、量記号はイタリック体の 、量の次元の記号はサンセリフ立体の N が推奨されている。物質量のSI単位はモルであり、モルの単位記号は mol である。熱力学的な状態量として見れば示量性状態量に分類される。.

化学反応と物質量 · 反応速度論と物質量 · 続きを見る »

計算化学

計算化学(けいさんかがく、computational chemistry)とは、計算によって理論化学の問題を取り扱う、化学の一分野である。複雑系である化学の問題は計算機の力を利用しなければ解けない問題が多いため、計算機化学と呼ばれることもあるが、両者はその言葉の適用範囲が異なっている。 近年のコンピュータの処理能力の発達に伴い、実験、理論と並ぶ第三の研究手段と考えられるまでに発展した。主に以下の手法を用いて化学の問題を取り扱う。.

化学反応と計算化学 · 反応速度論と計算化学 · 続きを見る »

量子化学

量子化学(りょうしかがく、quantum chemistry)とは理論化学(物理化学)の一分野で、量子力学の諸原理を化学の諸問題に適用し、原子と電子の振る舞いから分子構造や物性あるいは反応性を理論的に説明づける学問分野である。.

化学反応と量子化学 · 反応速度論と量子化学 · 続きを見る »

自由エネルギー

自由エネルギー(じゆうエネルギー、)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となるChang『生命科学系のための物理化学』 pp.63-65アトキンス『物理化学(上)』 pp.120-125。 自由エネルギーは1882年にヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギー()と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギー()と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G.

化学反応と自由エネルギー · 反応速度論と自由エネルギー · 続きを見る »

19世紀

19世紀に君臨した大英帝国。 19世紀(じゅうきゅうせいき)は、西暦1801年から西暦1900年までの100年間を指す世紀。.

19世紀と化学反応 · 19世紀と反応速度論 · 続きを見る »

上記のリストは以下の質問に答えます

化学反応と反応速度論の間の比較

反応速度論が38を有している化学反応は、93の関係を有しています。 彼らは一般的な15で持っているように、ジャカード指数は11.45%です = 15 / (93 + 38)。

参考文献

この記事では、化学反応と反応速度論との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »