ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

分子動力学法

索引 分子動力学法

表面への堆積。それぞれの円は単一原子の位置を示す。現在のシミュレーションにおいて用いられる実際の原子的相互作用は図中の2次元剛体球の相互作用よりも複雑である。 分子動力学法(ぶんしどうりきがくほう、molecular dynamics、MD法)は、原子ならびに分子の物理的な動きのコンピューターシミュレーション手法である。原子および分子はある時間の間相互作用することが許され、これによって原子の動的発展の光景が得られる。最も一般的なMD法では、原子および分子のトラクジェクトリは、相互作用する粒子の系についての古典力学におけるニュートンの運動方程式を数値的に解くことによって決定される。この系では粒子間の力およびポテンシャルエネルギーは原子間ポテンシャル(分子力学力場)によって定義される。MD法は元々は1950年代末に理論物理学分野で考え出されたが、今日では主に化学物理学、材料科学、生体分子のモデリングに適用されている。系の静的、動的安定構造や、動的過程(ダイナミクス)を解析する手法。 分子の系は莫大な数の粒子から構成されるため、このような複雑系の性質を解析的に探ることは不可能である。MDシミュレーションは 数値的手法を用いることによってこの問題を回避する。しかしながら、長いMDシミュレーションは数学的に悪条件であり、数値積分において累積誤差を生成してしまう。これはアルゴリズムとパラメータの適切な選択によって最小化することができるが、完全に取り除くことはできない。 エルゴード仮説に従う系では、単一の分子動力学シミュレーションの展開は系の巨視的熱力学的性質を決定するために使うことができる。エルゴード系の時間平均はミクロカノニカルアンサンブル(小正準集団)平均に対応する。MDは自然の力をアニメーションすることによって未来を予測する、原子スケールの分子の運動についての理解を可能にする「数による統計力学」や「ニュートン力学のラプラス的視点」とも称されている。 MDシミュレーションでは等温、定圧、等温・定圧、定エネルギー、定積、定ケミカルポテンシャル、グランドカノニカルといった様々なアンサンブル(統計集団)の計算が可能である。また、結合長や位置の固定など様々な拘束条件を付加することもできる。計算対象は、バルク、表面、界面、クラスターなど多様な系を扱える。 MD法で扱える系の規模としては、最大で数億原子からなる系の計算例がある。通常の計算規模は数百から数万原子(分子、粒子)程度である。 通常、ポテンシャル関数は、原子-原子の二体ポテンシャルを組み合わせて表現し、これを計算中に変更しない。そのため化学反応のように、原子間結合の生成・開裂を表現するには、何らかの追加の工夫が必要となる。また、ポテンシャルは経験的・半経験的なパラメータから求められる。 こうしたポテンシャル面の精度の問題を回避するため、ポテンシャル面を電子状態の第一原理計算から求める手法もある。このような方法は、第一原理分子動力学法〔量子(ab initio)分子動力学法〕と呼ばれる。この方法では、ポテンシャル面がより正確なものになるが、扱える原子数は格段に減る(スーパーコンピュータを利用しても、最大で約千個程度)。 また第一原理分子動力学法の多くは、電子状態が常に基底状態であることを前提としているものが多く、電子励起状態や電子状態間の非断熱遷移を含む現象の記述は、こうした手法であってもなお困難である。.

145 関係: Ab initioAMBER力 (物理学)力場 (化学)原子原子半径原子挿入法半経験的分子軌道法南カリフォルニア大学反応座標反応速度論古典力学境界条件多体問題密度汎関数理論平均力ポテンシャル二面角強結合近似弾道位置エネルギー化学反応化学結合化学物理学ナノテクノロジーペンシルベニア州立大学ペプチドミネソタ大学ツインシティー校ミラー指数ミクロカノニカルアンサンブルハートリー=フォック方程式バルク (界面化学)モンテカルロ法ヤング率ランダムコイルランダウの記号ランジュバン動力学リボソームルンゲ=クッタ法レナード-ジョーンズ・ポテンシャルレプリカ交換法ボルン–オッペンハイマー近似トンネル効果プレストビリンピーチピエール=シモン・ラプラスデューク大学デオキシリボ核酸フロリダ大学ファンデルワールス力...ファージフォールディングニュートン力学ニュートンの記法ベルレ・リストベレの方法ベレンゼン・サーモスタット分子分子力学法分光法分極率周期的境界条件アリー・ウォーシェルアルコールデヒドロゲナーゼアルゴリズム解析アルゴンアントン (スーパーコンピュータ)アンダーセン・サーモスタットエバルトの方法エルゴード理論エントロピーエンタルピーカノニカル分布カー・パリネロ法カプシドクラスター (物質科学)クーロンの法則ケイ素ゲルマニウムゴーシェ病タンパク質タンパク質構造サーモスタット動力学CHARMM立体配座等温定圧集団等方性媒質結合長統計集団炭素生体物質生化学生物物理学熱力学界面物理学物性物理学DNA超らせん運動 (物理学)非経験的分子軌道法静電気学表面表面科学複雑系計算化学計算物理学高分子超並列マシン能勢=フーバー・サーモスタット脂質二重層重合体量子力学量子化学離散化電荷透過型電子顕微鏡陰溶媒Folding@homeGROMACSIBM 704NAMDQM/MMX線回折材料工学条件数核磁気共鳴構造生物学水モデル液晶温度断熱過程数値積分数値解析1957年1964年1971年1977年1980年1983年1984年1985年1991年2体ポテンシャル インデックスを展開 (95 もっと) »

Ab initio

ab initio(ab initio:元はラテン語なのでイタリックでの表記が正式)は、いわゆる第一原理とほぼ同義の言葉。化学系でよく使われるが、物理学および生物学の分野でも使用される。 “アブイニショ”、“アブイニシォ”のように発音するが、この言葉にぴったりと対応する日本語は存在しない。元々はラテン語で、“最初から”、“初めから”という意味がある。.

新しい!!: 分子動力学法とAb initio · 続きを見る »

AMBER

(AMBER、アンバー)は、生体分子の分子動力学計算のための力場群である。最初はカリフォルニア大学サンフランシスコ校のピーター・コールマンのグループによって開発された。AMBERは、これらの力場をシミュレーションする分子動力学ソフトウェアパッケージの名称でもある。現在は、ラトガース大学のデイビッド・ケイス、ユタ大学のトム・チーサム、NIEHSのトム・ダーデン、ミシガン州立大学のケン・マーズ、ストーニーブルック大学のカルロス・シマーリング、カリフォルニア大学アーバイン校のレイ・ルオ、エンサイシブ・ファーマシューティカルズ社のジュメイ・ワンによって維持管理がされている。 AMBERによりエタン分子の結合の伸縮エネルギーが最小化される。.

新しい!!: 分子動力学法とAMBER · 続きを見る »

力 (物理学)

物理学における力(ちから、force)とは、物体の状態を変化させる原因となる作用であり、その作用の大きさを表す物理量である。特に質点の動力学においては、質点の運動状態を変化させる状態量のことをいう。広がりを持つ物体の場合は、運動状態とともにその形状を変化させる。 本項ではまず、古代の自然哲学における力の扱いから始め近世に確立された「ニュートン力学」や、古典物理学における力学、すなわち古典力学の発展といった歴史について述べる。 次に歴史から離れ、現在の一般的視点から古典力学における力について説明し、その後に古典力学と対置される量子力学について少し触れる。 最後に、力の概念について時折なされてきた、「形而上的である」といったような批判などについて、その重要さもあり、項を改めて扱う。.

新しい!!: 分子動力学法と力 (物理学) · 続きを見る »

力場 (化学)

力場はエタン分子の結合伸縮エネルギーを最小化するために使用されている。 分子モデリングの文脈における力場(りきば、force field)は、粒子の系(通常分子および原子)のポテンシャルエネルギーを記述するために用いられる関数の式および媒介変数を意味する。力場関数および媒介変数(パラメータ)セットは、実験ならびに高レベルの量子力学計算に由来する。「全原子」力場は水素を含む系の全ての種類の原子のパラメータを提供するが、「融合原子 (united-atom)」力場は、メチルおよびメチレン基中の水素および炭素原子を単一の相互作用中心として扱う。タンパク質の長時間シミュレーションに頻繁に使用される「粗い (corse-grained)」力場は、計算の効率性を上げるためにより粗い表現を用いる。 化学および計算生物学における「力場」という用語の用法は、物理学における標準的な用法とは異なっている。化学では、ポテンシャルエネルギー関数の系であり、物理学で定義されるはの勾配である。.

新しい!!: 分子動力学法と力場 (化学) · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 分子動力学法と原子 · 続きを見る »

原子半径

原子半径(げんしはんけい、atomic radius)とは、分子、結晶内などに存在するそれぞれの原子を剛体球とみなした場合の半径のこと。 同じ原子でも置かれた、あるいは取り得る状況(分子、結晶内での結合様式など)によって異なった定義があり、複数の値が使い分けられる。定義の違いは結合様式によるもので、ファンデルワールス半径、共有結合半径、金属結合半径、イオン半径などが、主に用いられる原子半径である。構造化学あるいは計算化学で取り扱われる。 同周期内の原子同士では、原子番号が大きくなるほど半径は小さくなる。 けんしはんけい.

新しい!!: 分子動力学法と原子半径 · 続きを見る »

原子挿入法

原子挿入法(げんしそうにゅうほう、Embedded Atom Method、EAM)または原子埋め込み法とは、2つの原子間のエネルギーを記述する近似法である。関数系に対するパラメータがバルクの性質(格子定数、凝集エネルギー等)を再現するようにフィットされているので経験的なポテンシャルのひとつである。fcc金属、bcc金属、遷移金属をよく再現する。現在、EAMには様々な仕様がある。 このポテンシャルでは全エネルギーが以下のように埋め込みエネルギーと二体項の和で表現される。 ここで右辺第1項のFi は埋め込み関数と呼ばれ原子i の点の電子密度ni の関数である。この電子密度は原子i を除く近傍の原子が点i に作る電子密度であり、 と書ける。したがってこの項は多体的である。 第2項については原子核-原子核の二体間クーロン相互作用であり、基本的に斥力として影響する。.

新しい!!: 分子動力学法と原子挿入法 · 続きを見る »

半経験的分子軌道法

半経験的分子軌道法(はんけいけんてきぶんしきどうほう、semi-empirical molecular orbital method)では、ハートリー-フォック方程式を解く際に経験的パラメータを使用して、分子の電子状態を計算する。ab initio分子軌道法に比べ計算量が大幅に減少するため、大きな分子を取り扱うのに有利である。また、経験的パラメータを用いることによって電子相関効果の一部を含むことができる。その近似方法には、省略する分子積分や用いるパラメータによって多くの手法が存在する。.

新しい!!: 分子動力学法と半経験的分子軌道法 · 続きを見る »

南カリフォルニア大学

Bovard Administration Building Mudd Hall of Philosophy ドヘニー図書館 トミートロージャン ロサンゼルス・メモリアル・コロシアム.

新しい!!: 分子動力学法と南カリフォルニア大学 · 続きを見る »

反応座標

化学分野において、反応座標(はんのうざひょう、reaction coordinate)とは、 反応経路に沿った反応進行度を表す抽象的な1次元座標のこと 。 化学反応の過程で変化する幾何パラメータが、一般に反応座標にあたる。 分子動力学シミュレーションにおいては集団変数(しゅうだんへんすう、collective variable)とも呼称される 。 反応座標は結合長、結合角といった実在する座標系を表すこともあるが、 より複雑な反応では特に、幾何パラメータではなく結合次数などが用いられることがある。 反応の (の断面)の概略となるように、 反応座標と自由エネルギーの関係をプロットすることが多い。 遷移状態理論の中で反応座標は、 各素過程において反応物から遷移状態を介して生成物へと滑らかに変化する原子配置から得られる。 一般に反応座標は、反応物から生成物に至る過程の、ポテンシャルエネルギーの勾配を元に選ばれる。(登りでは勾配の最も緩い経路が選ばれ、下りでは勾配が最も急な経路が選ばれる) 例えば、水素分子のホモリティック開裂で、適切な座標系を選ぶとすれば、 結合長に対応する座標になるだろう。.

新しい!!: 分子動力学法と反応座標 · 続きを見る »

反応速度論

反応速度論(はんのうそくどろん、chemical kinetics)とは反応進行度の時間変化(速度)に関する物理化学の一分野である。物体の速度を扱う力学との類推で、かつては化学動力学と呼ばれていた。反応速度論の目的は反応速度を解析することで、反応機構や化学反応の物理学的本質を解明することにあった。今日においては原子あるいは分子の微視的運動状態は、巨視的な反応速度解析に頼ることなく、量子化学などの理論に基づき計算化学的な手法で評価する分子動力学によって解明できるようになっている。それゆえ、今日の反応速度論は学問的真理の探求よりは、実際の化学反応を制御する場合の基礎論理として利用されている。 なお、反応速度の求め方については記事 反応速度に詳しい。.

新しい!!: 分子動力学法と反応速度論 · 続きを見る »

古典力学

古典力学(こてんりきがく、英語:classical mechanics)は、量子力学が出現する以前のニュートン力学や相対論的力学。物理学における力学に関する研究、つまり適当な境界の下に幾何学的表現された物質やその集合体の運動を支配し、数学的に記述する物理法則群に関する研究のうち、量子論以降の量子に関するそれを「量子力学」とするのに対し、レトロニム的に、量子論以前のもの(現代でもさかんに研究されている分野だが)を指してそう呼ぶ。 古典力学は、マクロな物質の運動つまり、弾道計算から部分的には機械動作、天体力学、例えば宇宙船、衛星の運動、銀河に関する研究に使われている。そして、それらの領域に対して、とても精度の高い結果をもたらす、最も古く最も広範な科学、工学における領域のうちの一つである。古典力学以外の領域としては気体、液体、固体などを扱う多くの分野が存在している。加えて、古典力学は光速に近い場合には特殊相対性理論を用いることによってより一般な形式を与えることとなる。同様に、一般相対性理論は、より深いレベルで重力を扱うこととなり、量子力学では、分子や原子における、粒子と波動の二重性について扱うこととなる。.

新しい!!: 分子動力学法と古典力学 · 続きを見る »

境界条件

境界条件(きょうかいじょうけん、boundary condition)とは、境界値問題に課される拘束条件のこと。特に数学・物理学の用語としてよく用いられる。 境界条件は、境界値問題において興味のある解の探索領域とそれ以外の領域とを分けるために設定される。境界上では、境界内部で成り立つ方程式だけでは解の形を決定することができないので、補助的な条件を設定することで解を定める必要がある。この境界条件は多くの場合、対象とする境界値問題より一般的に成り立つであろう解の性質によって決定される。それは例えば境界上での解の値であったり、解の連続性や滑らかさであったりする。 時間的な境界条件の一つとして初期条件がある。時間発展を記述する方程式について、初期条件は応用上特別な意味を持つため、一般の境界条件とは分けて言及されることが多い。.

新しい!!: 分子動力学法と境界条件 · 続きを見る »

多体問題

多体問題(たたいもんだい、N‐body problem)は、互いに相互作用する3体以上からなる系を扱う問題である。.

新しい!!: 分子動力学法と多体問題 · 続きを見る »

密度汎関数理論

密度汎関数理論(みつどはんかんすうりろん、density functional theory、略称: DFT)は電子系のエネルギーなどの物性を電子密度から計算することが可能であるとする理論である。また密度汎関数法(みつどはんかんすうほう)は密度汎関数理論に基づく電子状態計算法である。 密度汎関数理論は物理や化学の分野で、原子、分子、凝集系などの多体電子系の電子状態を調べるために用いられる量子力学の手法である。この理論では多体系の全ての物理量は空間的に変化する電子密度の汎関数(すなわち関数の関数)として表され、密度汎関数理論という名前はそこから由来している。密度汎関数理論は凝集系物理学や計算物理、計算化学の分野で実際に用いられる手法の中で、もっとも使われていて汎用性の高い手法である。 1970年代には密度汎関数理論は固体物理でよく用いられるようになった。多くの固体で密度汎関数理論を用いた計算は実験結果との十分な一致を得ることができ、しかも計算コストもハートリー–フォック法やその派生といった多体の波動関数を用いる手法と比べて小さかった。密度汎関数理論を用いた方法は1990年代までは量子化学の計算には十分な精度がでないと考えられていたが、交換-相関相互作用に対する近似が改善されることによって今日では化学と固体物理学の両方の分野を牽引する手法の一つとなっている。 このような進歩にも関わらず、分子間相互作用(特にファンデルワールス力)や、電荷移動励起、ポテンシャルエネルギー面、強い相関を持った系を表現することや、半導体のバンドギャップを計算することは、未だに密度汎関数理論を用いた手法での扱いが難しい。(すくなくとも単独では)分散を表現するのに効果的な密度汎関数理論を用いた手法は今のところ存在せず、分散が支配する系(例えば、相互作用しあう希ガス原子)や分散が他の効果と競い合うような系(例えば生体分子)では適切な取り扱いを難しくしている。この問題を解決するために、汎関数を改善したり、他の項を取り入れたりする手法が現在の研究の話題となっている。.

新しい!!: 分子動力学法と密度汎関数理論 · 続きを見る »

平均力ポテンシャル

平均力ポテンシャル(へいきんりょくポテンシャル、potential of mean force、略称: PMF)とは、任意に選んだある座標に沿った自由エネルギー曲面のことである。ある系を計算により取り扱う場合、分子内・分子間座標(原子間距離や二面角など)の関数としての自由エネルギー変化に興味が持たれる。もし溶媒中の系に着目していれば、PMFには溶媒効果が含まれる。.

新しい!!: 分子動力学法と平均力ポテンシャル · 続きを見る »

二面角

thumb 二面角(にめんかく、dihedral angle)は、2つの平面(またはその部分集合)がなす角度である。たとえば、二面角が0なら2面は平行(同一の場合を含む)で、π/2(90°)なら垂直である。 二面角は、法線同士の角度として定義される。つまり、2面の法線ベクトルをa・bとすると二面角 は で表せる。cosを取っているため、二面角は2π(360°)の周期性を別にしても一意には決まらないが、通常は0~π(180°)の範囲で表す。ただし、多面体の面など内側と外側を区別する場合は、0~360°の範囲で表す。また、内側・外側も面の向きも区別しない場合は、 と絶対値を取り、0~π/2(90°)の範囲で表す。2つの平面は鋭角と鈍角の2つの角度を為すので、そのうち鋭角のほうを取っていることになる。 二面角は、2面に垂直な平面(平行移動の自由度を残して決まる)での断面内で考えると、通常の直線同士の角度に還元できる。面の断面は直線なので、断面の2直線がなす角度が2面の二面角である。 二面角は、3つの(零でない)ベクトルa・b・cに対しても定義でき、面ab(ベクトルaとベクトルbを含む面)と面bcの二面角を考える。また、4つの(異なる)点A・B・C・Dについても、面ABCと面BCDの二面角を考える。面ABCと面BCDの二面角が0でない場合、直線ABと直線CDはねじれの位置にある。このため、ねじれ角 (torsion angle)ともいう。.

新しい!!: 分子動力学法と二面角 · 続きを見る »

強結合近似

固体物理学において、強結合近似(きょうけつごうきんじ、)は電子バンド計算の際に用いられる近似の一つで、系の波動関数を各原子の場所に位置する孤立原子に対する波動関数の重ね合わせにより近似する手法である。この手法は量子化学で用いられるLCAO法と密接な関係がある。さまざまな固体に対して用いることができ、多くの場合で定量的に良い結果を得ることができる。そうでない場合は他の手法と組み合せることもできる。強結合近似は一電子近似であるが、表面準位計算や様々な多体問題、準粒子の計算などの進んだ計算の叩き台として用いられる。強束縛近似、タイトバインディング近似とも。.

新しい!!: 分子動力学法と強結合近似 · 続きを見る »

弾道

弾道(だんどう)は、銃弾や砲弾が発射された瞬間から弾着する瞬間までにたどる経路の事である。 本項目では自由落下を伴い誘導制御されない弾道についてのみ記述する。.

新しい!!: 分子動力学法と弾道 · 続きを見る »

位置エネルギー

位置エネルギー(いちエネルギー)とは、物体が「ある位置」にあることで物体にたくわえられるエネルギーのこと。力学でのポテンシャルエネルギー(ポテンシャルエナジー、英:potential energy)と同義であり、主に教育の分野でエネルギーの概念を「高さ」や「バネの伸び」などと結び付けて説明するために導入される用語である。 位置エネルギーが高い状態ほど、不安定で、動き出そうとする性質を秘めているといえる。力との関係や数学的な詳細についてはポテンシャルに回し、この項目では具体的な例を挙げて説明する。.

新しい!!: 分子動力学法と位置エネルギー · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

新しい!!: 分子動力学法と化学反応 · 続きを見る »

化学結合

化学結合(かがくけつごう)は化学物質を構成する複数の原子を結びつけている結合である。化学結合は分子内にある原子同士をつなぎ合わせる分子内結合と分子と別の分子とをつなぎ合わせる分子間結合とに大別でき、分子間結合を作る力を分子間力という。なお、金属結晶は通常の意味での「分子」とは言い難いが、金属結晶を構成する結合(金属結合)を説明するバンド理論では、分子内結合における原子の数を無限大に飛ばした極限を取ることで、金属結合の概念を定式化している。 分子内結合、分子間結合、金属結合のいずれにおいても、化学結合を作る力は原子の中で正の電荷を持つ原子核が、別の原子の中で負の電荷を持つ電子を電磁気力によって引きつける事によって実現されている。物理学では4種類の力が知られているが、電磁気力以外の3つの力は電磁気力よりも遥かに小さい為、化学結合を作る主要因にはなっていない。したがって化学結合の後述する細かな分類、例えば共有結合やイオン結合はどのような状態の原子にどのような形で電磁気力が働くかによる分類である。 化学結合の定式化には、複数の原子がある場合において電子の軌道を決定する必要があり、そのためには量子力学が必須となる。しかし多くの簡単な化合物や多くのイオンにおいて、化学結合に関する定性的な説明や簡単な定量的見積もりを行う分には、量子力学で得られた知見に価電子や酸化数といった分子の構造と構成を使って古典力学的考察を加える事でも可能である。 それに対し複雑な化合物、例えば金属複合体では価電子理論は破綻し、その振る舞いの多くは量子力学を基本とした理解が必要となる。これに関してはライナス・ポーリングの著書、The Nature of the Chemical Bondで詳しく述べられている。.

新しい!!: 分子動力学法と化学結合 · 続きを見る »

化学物理学

化学物理学(かがくぶつりがく、英語:chemical physics)は、原子物理学や分子物理学、凝縮系物理学などの手法を利用して物理化学に関する現象を研究する物理学の一分野(物理学の観点から化学過程を研究する物理学の一分野)である。.

新しい!!: 分子動力学法と化学物理学 · 続きを見る »

ナノテクノロジー

ナノテクノロジー (nanotechnology) は、物質をナノメートル (nm, 1 nm.

新しい!!: 分子動力学法とナノテクノロジー · 続きを見る »

ペンシルベニア州立大学

ペンシルベニア州立大学(英語:The Pennsylvania State University)は、ペンシルベニア州ステートカレッジに位置する州立総合大学。.

新しい!!: 分子動力学法とペンシルベニア州立大学 · 続きを見る »

ペプチド

ペプチド(Peptid、peptide:ペプタイド, ギリシャ語の πεπτος (消化できる)に由来する)は、決まった順番で様々なアミノ酸がつながってできた分子の系統群である。1つのアミノ酸残基と次のそれの間の繋がりはアミド結合またはペプチド結合と呼ばれる。アミド結合は典型的な炭素・窒素単結合よりもいくらか短い、そして部分的に二重結合の性質をもつ。なぜならその炭素原子は酸素原子と二重結合し、窒素は一つの非共有電子対を結合へ利用できるからである。 生体内で産生されるペプチドはリボソームペプチド、非リボソームペプチド、消化ペプチドの3つに大別される。.

新しい!!: 分子動力学法とペプチド · 続きを見る »

ミネソタ大学ツインシティー校

ミネソタ大学ツインシティー校(The University of Minnesota, TwinCities)は、アメリカ合衆国ミネソタ州最大の都市ミネアポリスと同州の州都セントポールにまたがって本部を置く、同国最大の研究機関型州立総合大学の一つである。ミネアポリスとセントポールの二都市を中心とした大都市圏が「Twin Cities(=双子都市)」と呼称されるため、学校名も「ミネソタ大学ツインシティー校」という。1851年に設置された。大学の略称は「U of M」、「UMTC」。同州のミネソタ州立大学(w:Minnesota State University)とは別の大学組織である。 ツインシティー校はミネソタ大学(The University of Minnesota)の旗艦校(本校)であり、ツインシティー校、ダルース(Duluth)校、モーリス(Morris)校、クルークストン(Crookston)校、ロチェスター(Rochester)校の5校からなる、ミネソタ大学系列の中で最古かつ最大の大学である。州立大学の大学として「パブリック・アイビー」の一つに数えられることもある。医療、理工学の研究実績で名高い。1908年より、北米トップレベルの研究型大学で組織されるアメリカ大学協会(The Association of American Universities, AAU)に加盟している。これまでに9名の卒業生、15名の教授がノーベル賞を受賞、86名のグッゲンハイムフェローをはじめ、数多くの分野にわたり人材を輩出してきた。 総学生数は50,678人(2015年統計)で、その規模と同時に17対1の学生対教員の比率が保たれ充実した教育・研究機関としても知られる。143の学部の学位と150の大学院の学位を授与している。国際交流にも力を入れており、日本の一橋大学、名古屋大学、広島大学、上智大学をはじめ、海外250校以上の大学との交換留学プログラムを有する。.

新しい!!: 分子動力学法とミネソタ大学ツインシティー校 · 続きを見る »

ミラー指数

ミラー指数(ミラーしすう)は結晶の格子中における結晶面や方向を記述するための指数であるキッテル固体物理学入門上・下 / Charles Kittel著表面科学・触媒科学への展開 / 川合眞紀、堂免一成著.

新しい!!: 分子動力学法とミラー指数 · 続きを見る »

ミクロカノニカルアンサンブル

小正準集団(しょうせいじゅんしゅうだん)、ミクロカノニカルアンサンブル(microcanonical ensemble)は、統計力学における系の微視的状態を表現する統計集団の一つである。 この統計集団が従う確率分布を小正準分布(しょうせいじゅんぶんぷ)、ミクロカノニカル分布(microcanonical distribution)という。小正準集団は孤立系に対応する統計集団である。.

新しい!!: 分子動力学法とミクロカノニカルアンサンブル · 続きを見る »

ハートリー=フォック方程式

ハートリー=フォック方程式(ハートリーフォックほうていしき、Hartree–Fock equation)は、多電子系を表すハミルトニアンの固有関数(波動関数)を一個のスレーター行列式で近似(ハートリー=フォック近似)した場合に、それが基底状態に対する最良の近似となるような(スピンを含む)1電子分子軌道の組を探し出すための方程式である。ウラジミール・フォックによって導かれた。分子軌道法の基本となる方程式である。 ハートリー=フォック方程式 は、\の近似的な解が与えられた場合、方程式中の\置換することで方程式 が誘導される。すなわちこの方程式の\hatには固有関数\psiは含まれず、普通の固有値方程式として解くことが出来る。 これにより得られた解を近似解として適用し再帰的に解く事で、多電子系のフェルミ粒子(この場合は電子)全体の作る平均場と、その中で一粒子運動をするフェルミ粒子の波動関数を自己無撞着に決定することができる(SCF法)。.

新しい!!: 分子動力学法とハートリー=フォック方程式 · 続きを見る »

バルク (界面化学)

バルク (Bulk) とは、ある物体、流体のうち界面に触れていない部分を指す。 物体の、界面や境膜、物質表面などと対になる部分であり、ある物質の物性といえばバルク部分が持つ性質を指す。主に界面化学、移動現象論、物性物理などで用いられる用語である。.

新しい!!: 分子動力学法とバルク (界面化学) · 続きを見る »

モンテカルロ法

モンテカルロ法 (モンテカルロほう、Monte Carlo method, MC) とはシミュレーションや数値計算を乱数を用いて行う手法の総称。元々は、中性子が物質中を動き回る様子を探るためにスタニスワフ・ウラムが考案しジョン・フォン・ノイマンにより命名された手法。カジノで有名な国家モナコ公国の4つの地区(カルティ)の1つであるモンテカルロから名付けられた。ランダム法とも呼ばれる。.

新しい!!: 分子動力学法とモンテカルロ法 · 続きを見る »

ヤング率

ヤング率(ヤングりつ、Young's modulus)は、フックの法則が成立する弾性範囲における、同軸方向のひずみと応力の比例定数である。この名称はトマス・ヤングに由来する。縦弾性係数(たてだんせいけいすう、modulus of longitudinal elasticity)とも呼ばれる。.

新しい!!: 分子動力学法とヤング率 · 続きを見る »

ランダムコイル

ランダムコイル(Random coil)とは、ポリマーを構成するモノマーが隣接したモノマーと結合しながらランダムに配向したものである。1つの決まった形はないが、分子全体の統計的な分布というものは考えられる。安定化の力や相互作用が働かなければ、水溶液中や溶解温度ではポリマーの主鎖は直鎖状や分岐状などを含めた取りうるあらゆる形をとるが、全体としてはコイル状と見なせることからランダムコイルと名づけられた。サブユニットが相互作用を持たないとすると、モノマーと共存する短いコポリマーもランダムコイルの仲に分散する。また分岐ポリマーの一部もランダムコイルと見なせる。 融点以下では、ポリエチレンやナイロンなどの熱可塑性プラスチックは結晶性領域とアモルファス領域を持ち、アモルファス領域では鎖はほぼランダムコイルの状態をとっている。アモルファス領域は弾力性に、結晶性領域は強度に寄与している。 タンパク質の様なより複雑なポリマーでは、様々な相互作用により、特定の形に自己組織化が行われる。しかしタンパク質やポリペプチドの二次構造を欠いた領域はしばしばランダムコイルの形状を取る。アミノ酸の側鎖が相互作用することでエネルギーが低くなりやすく、また任意のアミノ酸配列でも水素結合を作ることはよくあるので、タンパク質のランダムコイルはなかなか起こらない。ランダムコイルの配座エントロピーはエネルギーの安定化をもたらし、フォールディングのエネルギー障壁となっている。 ランダムコイル構造は顕微鏡を使って検出できる。また円偏光二色性でも、平面的なアミド結合が際立ったシグナルとして、核磁気共鳴分光法でも特徴的なケミカルシフトとして検出できる。結晶のX線回折では、ランダムコイルの領域は電子密度の低い部分として見える。 タンパク質は変性させればランダムコイル状態になると言われるが、変性では真のランダムコイルの状態にはならないという報告もある(Shortle & Ackerman)。.

新しい!!: 分子動力学法とランダムコイル · 続きを見る »

ランダウの記号

ランダウの記号(ランダウのきごう、Landau symbol)は、関数の極限における値の変化度合いに、おおよその評価を与えるための記法である。 ランダウの漸近記法 (asymptotic notation)、ランダウ記法 (Landau notation) あるいは主要な記号として O (オーもしくはオミクロン Ο。数字の0ではない)を用いることから(ランダウの)O-記法、ランダウのオミクロンなどともいう。 記号 O は「程度」の意味のオーダー(Order)から。 なおここでいうランダウはエドムント・ランダウの事であり、『理論物理学教程』の著者であるレフ・ランダウとは別人である。 ランダウの記号は数学や計算機科学をはじめとした様々な分野で用いられる。.

新しい!!: 分子動力学法とランダウの記号 · 続きを見る »

ランジュバン動力学

物理学において、ランジュバン動力学(ランジュバンどうりきがく、Langevin dynamics)は、分子系の動力学の数学的モデリングのための手法である。フランスの物理学者ポール・ランジュバンによって開発された。この手法は確率微分方程式の使用によって省略された自由度を説明すると同時に単純化されたモデルを使うことが特徴である。.

新しい!!: 分子動力学法とランジュバン動力学 · 続きを見る »

リボソーム

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) '''リボソーム'''、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 リボソームまたはリボゾーム(; ライボソーム)は、あらゆる生物の細胞内に存在する構造であり、粗面小胞体 (rER) に付着している膜結合リボソームと細胞質中に存在する遊離リボソームがある。mRNAの遺伝情報を読み取ってタンパク質へと変換する機構である翻訳が行われる場である。大小2つのサブユニットから成り、これらはタンパク質(リボソームタンパク、ribosomal protein)とRNA(リボソームRNA、rRNA; ribosomal RNA)の複合体である。細胞小器官に分類される場合もある。2000年、X線構造解析により立体構造が決定された。.

新しい!!: 分子動力学法とリボソーム · 続きを見る »

ルンゲ=クッタ法

ルンゲ=クッタ法(Runge–Kutta method)とは、数値解析において微分方程式の初期値問題に対して近似解を与える一連の方法である。この技法は1900年頃に数学者カール・ルンゲとによって発展された。.

新しい!!: 分子動力学法とルンゲ=クッタ法 · 続きを見る »

レナード-ジョーンズ・ポテンシャル

レナード=ジョーンズ・ポテンシャル(Lennard-Jones potential)Gordon M. Barrow (著), 大門 寛 (翻訳), 堂免 一成 (翻訳),“バーロー物理化学〈上〉”東京化学同人; 第6版 (1999/03)キッテル(著)、宇野 良清、他(翻訳),“固体物理学入門 第8版”, 丸善,2005.12(ISBN 4621076531)とは、2つの原子間の相互作用ポテンシャルエネルギーを表す経験的なモデルの一つである。ポテンシャル曲線を表す式が簡単で扱いやすいので、分子動力学計算など、様々な分野において使われる。その名はレナード=ジョーンズにちなむ。 レナード=ジョーンズ・ポテンシャルは、実際のポテンシャル曲線を表現するための簡便な手法であり、少数のパラメータを用いたフィッティングに相当するため厳密ではない。しかし、問題の種類によっては、この方法で十分な場合がかなり多い。レナード=ジョーンズ・ポテンシャルに用いるパラメータは、実験的に求められた第二ビリアル係数、粘性係数、熱伝導率などから、推定することができる。他の原子間の相互作用のモデルポテンシャルとしては、(Morse potential)等が挙げられる。.

新しい!!: 分子動力学法とレナード-ジョーンズ・ポテンシャル · 続きを見る »

レプリカ交換法

レプリカ交換法(レプリカこうかんほう、replica exchange method、レプリカ交換MCMCサンプリング)はパラレルテンパリング(、並列焼きもどし)法としても知られ、モンテカルロシミュレーションやマルコフ連鎖モンテカルロ法(MCMC)のサンプリング効率を改善するための方法である。SwendsenとWangによって開発され、Geyerによって拡張され、その後、特に、福島・根本およびによって発展した。杉田と岡本はパラレルテンパリングの分子動力学法版を考案した。これはレプリカ交換分子動力学(、REMD)として知られている。 手法としては、始めに異なる温度でランダムに初期化された 個の系のコピーを走らせ、メトロポリス法の基準でそれぞれ温度間で系の状態を交換するものである。 この方法の重要な点は、低温のシミュレーションで高温の設定が(またはその逆も)できることである。低エネルギー配置と高エネルギー配置の両方をサンプリングできるため、とても安定にかつ正確なシミュレーションを行うことができる。このようにして、正準集団では一般にうまく計算されない比熱といった熱力学特性がかなり正確に計算できる。.

新しい!!: 分子動力学法とレプリカ交換法 · 続きを見る »

ボルン–オッペンハイマー近似

ボルン–オッペンハイマー近似(ボルン–オッペンハイマーきんじ、)とは、電子と原子核の運動を分離して、それぞれの運動を表す近似法である。この近似は、原子核の質量が電子の質量よりも遥かに大きいために可能となる。 まず、電子状態については、原子核が固定されているものとして、電子波動関数とエネルギー固有値を求めることができる。これにより、ポテンシャルエネルギー曲線(曲面)を核の座標の関数として定義することができる。そして、核の波動関数は、核の運動がこのポテンシャルエネルギー曲面上に乗っているものとして求めることができる。 この近似により、分子の電子波動関数と振動・回転の波動関数を分離して求めることが可能になる。また、分子の励起に伴う振動状態の分布に関する、フランク=コンドンの原理も説明することができる。.

新しい!!: 分子動力学法とボルン–オッペンハイマー近似 · 続きを見る »

トンネル効果

トンネル効果 (トンネルこうか) 、量子トンネル(りょうしトンネル )、または単にトンネリングとは、古典力学的には乗り越えられないはずのを粒子があたかも障壁にあいたトンネルを抜けたかのように通過する量子力学的現象である。太陽のような主系列星で起こっている核融合など、いくつかの物理的現象において欠かせない役割を果たしている。トンネルダイオード、量子コンピュータ、走査型トンネル顕微鏡などの装置において応用されているという意味でも重要である。この効果は20世紀初頭に予言され、20世紀半ばには一般的な物理現象として受け入れられた。 トンネリングはハイゼンベルクの不確定性原理と物質における粒子と波動の二重性を用いて説明されることが多い。この現象の中心は純粋に量子力学的な概念であり、量子トンネルは量子力学によって得られた新たな知見である。.

新しい!!: 分子動力学法とトンネル効果 · 続きを見る »

プレスト

プレスト (Presto).

新しい!!: 分子動力学法とプレスト · 続きを見る »

ビリン

ビリン(bilin)(ビラン又は胆汁色素)はポルフィリン類の代謝物としてたくさんの臓器で生成される生化学的な色素である。ビリン(ビリクロムとも呼ばれる)は、ヒトの胆汁(バイル)から名付けられたが、これらの物質はより下等な脊椎動物、無脊椎動物、紅藻、緑色植物、シアノバクテリアからも発見されている。ビリン類は、赤色、オレンジ色、黄色、茶色、青色、緑色を呈することができる。.

新しい!!: 分子動力学法とビリン · 続きを見る »

ピーチ

ピーチ; peach.

新しい!!: 分子動力学法とピーチ · 続きを見る »

ピエール=シモン・ラプラス

ピエール=シモン・ラプラス(Pierre-Simon Laplace, 1749年3月23日 - 1827年3月5日)は、フランスの数学者、物理学者、天文学者。「天体力学概論」(traité intitulé Mécanique Céleste)と「確率論の解析理論」という名著を残した。 1789年にロンドン王立協会フェローに選出された。.

新しい!!: 分子動力学法とピエール=シモン・ラプラス · 続きを見る »

デューク大学

モットーは『Eruditio et Religio 』(ラテン語、意味は『知識と信仰』)。U.S.NEWS全米総合大学ランキングにおいて常にトップ10入り、どの様な世界大学ランキングでも常にトップ30入りする世界屈指の名門大学である。2017年の合格率は10%。 ヒドゥン・アイビー、アイビー・プラスに数えられる。2017年までに11名のノーベル賞受賞者、3名のチューリング賞受賞者を輩出している。ノースカロライナ州立大学、ノースカロライナ大学チャペルヒル校と共にリサーチ・トライアングル・パークを先導する三大学のうちの一つである。.

新しい!!: 分子動力学法とデューク大学 · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: 分子動力学法とデオキシリボ核酸 · 続きを見る »

フロリダ大学

フロリダ大学(英語: University of Florida、FloridaまたはUFとも呼ばれる)は、アメリカ合衆国フロリダ州ゲインズビルに本部を置く州立大学である。1853年に設置された。フロリダ州で最古、最大規模の大学で、フロリダ大学システムでは2番目、アメリカ合衆国では3番目の大きさを誇る。.

新しい!!: 分子動力学法とフロリダ大学 · 続きを見る »

ファンデルワールス力

ファンデルワールス力(ファンデルワールスりょく、van der Waals force)は、原子、イオン、分子間(場合によっては、同一分子の中の異なる原子団の間)に働く引力または反発力の中で、次に挙げる物理的起源をもつ相互作用のものを総称する。.

新しい!!: 分子動力学法とファンデルワールス力 · 続きを見る »

ファージ

ファージ (Phage) は細菌に感染するウイルスの総称。正式にはバクテリオファージと呼ばれる。 ファージの基本構造は、タンパク質の外殻と遺伝情報を担う核酸 (主に二本鎖DNA) からなる。ファージが感染した細菌は細胞膜を破壊される溶菌という現象を起こし、死細胞を残さない。細菌が食べ尽くされるかのように死滅するため、これにちなんで「細菌(bacteria)を食べるもの(ギリシア語:phagos)」を表す「バクテリオファージ(bacteriophage)」という名がつけられた。 20世紀初頭にアーネスト・ハンキンとフレデリック・トウォートによって独立に発見され、カナダの生物学者フェリックス・デレーユによって溶菌作用が見出された。初期の分子生物学においてモデル生物として盛んに用いられた。またファージのゲノムは改変され、遺伝子導入やDNA断片のライブラリ作成などにも用いられている。有名なファージの一つにはラムダファージ(λファージ)があり、大腸菌に感染する。全ゲノムの解読はラムダファージで行われた(ゲノムプロジェクト)。また、ウイルス粒子が非常に複雑な形態のT4ファージもよく知られている。.

新しい!!: 分子動力学法とファージ · 続きを見る »

フォールディング

フォールディング (folding) は、タンパク質が特定の立体構造に折りたたまれる現象をいう。.

新しい!!: 分子動力学法とフォールディング · 続きを見る »

ニュートン力学

ニュートン力学(ニュートンりきがく、)は、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである『改訂版 物理学辞典』培風館。。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる。.

新しい!!: 分子動力学法とニュートン力学 · 続きを見る »

ニュートンの記法

ニュートンの記法(にゅーとんのきほう、Newton's notation)は、数学における微分の記法のひとつである。 この記法はアイザック・ニュートンが (流率・流動率) と呼称した時間に対する変化率を表すために導入したもので、関数名の上部に微分の階数と同数のドット符号を記す。 ニュートンの記法は主として古典力学あるいは機械工学で用いられ、次のように定義される。 ドット記号の個数により微分回数を表すため、あまり高階の微分には有用ではない。しかし古典力学あるいは他の工学分野の対象においては高階導関数はあまり出現せず、例えば位置の一階微分である速度、二階微分である加速度などとしての利用が大半である(例外として躍度がある)。 ニュートンの記法は、時間に限らずあらゆる変数の微分に対して用いられてきたが、現在では、物理学などにおいては専ら時間微分に対してのみ用いられている。これはニュートンの記法が微分する変数を明示しないためである。ライプニッツの記法などでは、どの独立変数に対する微分かを明示しているため、混同の恐れがある限りにおいて、ニュートンの記法は用いない。 ニュートンの記法は、ラグランジュ力学において、一般化座標 と組になる一般化速度 を表わすために広く用いられている。 積分についてはニュートンは標準的記法は考案しなかったが、広く認知・定着したのはライプニッツの積分の記法である。.

新しい!!: 分子動力学法とニュートンの記法 · 続きを見る »

ベルレ・リスト

ベルレ・リスト(Verlet list)は、任意のカットオフ(打ち切り)相互距離内の全ての粒子のリストを効率的に維持するための分子動力学シミュレーションにおけるデータ構造である。名称はルー・ベルレに因む。 この方法はモンテカルロシミュレーションに容易に応用できる。短距離相互作用については、カットオフ半径が大抵使われる。カットオフ半径を超えると粒子の相互作用はゼロに「十分近い」と見なされ安全に無視される。個々の粒子について、ベルレ・リストが構築される。これにはポテンシャルカットオフ距離内のその他の全ての粒子が記載され、さらに更新される前に複数の連続したモンテカルロ「スイープ」に使用できるようにいくらか余分な距離を含む。更新の前に同じベルレ・リストをn回使用したい場合は、ベルレ・リストに含めるカットオフ距離はR_c + 2nd(R_cはポテンシャルのカットオフ距離、dは単一粒子の最大モンテカルロステップ)でなければならない。ゆえに、ベルレ・リストを計算するためにはN^2オーダーの時間を費すが(Nは粒子の総数)、(NNではなく)Nn^2オーダーのnモンテカルロ「スイープ」という見返りが得られる。nの選択を最適化することで、ベルレ・リストを用いることによってモンテカルロスイープのO(N^2)問題をO(N^)へ変換できることが示されている。 O(N)における最近傍を同定するためにセル・リスト用いると、さらに計算コストを削減できる。.

新しい!!: 分子動力学法とベルレ・リスト · 続きを見る »

ベレの方法

ベレの方法(ベレのほうほう、Verlet algorithm)は、分子動力学法などにおいて、原子間(粒子間)に働く力をもとに原子(粒子)を逐次的に動かす方法の一つ。ベレのアルゴリズム、ベレ法、ベルレの方法などとも言う。 原子(粒子)の位置をR、質量をMI(Iは原子の指標)、力をF、時間をtとして、 \vec_I(t + \Delta t).

新しい!!: 分子動力学法とベレの方法 · 続きを見る »

ベレンゼン・サーモスタット

ベレンゼン・サーモスタット(Berendsen thermostat)は、分子動力学シミュレーションにおいてシミュレーション温度を制御するために粒子の速度の縮尺を変更するためのアルゴリズムである。.

新しい!!: 分子動力学法とベレンゼン・サーモスタット · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: 分子動力学法と分子 · 続きを見る »

分子力学法

力場がこのエタン分子の結合伸縮エネルギーを最小化するために使われる。 分子力学法(ぶんしりきがくほう、Molecular Mechanicsの頭文字よりMM法と略される)あるいは分子力場計算(ぶんしりきばけいさん)とは、分子の立体配座の安定性や配座間のエネルギー差を原子間に働く力によるポテンシャルエネルギーの総和によって計算する手法のことである。 分子の持つエネルギーはシュレーディンガー方程式を解くことによって計算することが可能であるが、これは分子を構成する原子および電子の数が多くなると計算量が急激に増加し困難になる。 しかしその一方で、分子の内部の原子同士に働く力はその原子の種類や結合様式が同じならば、別の種類の分子でもほぼ同じである。例えばsp3混成の炭素原子と水素原子の結合距離はどのような分子でもほぼ0.11 nm、結合エネルギーはほぼ4.1×102 kJ mol−1、赤外吸収スペクトルでほぼ2950 cm−1付近に吸収を示す。このことはsp3混成の炭素原子と水素原子の結合距離の伸縮に伴って2つの原子間に働く力が分子によらず、ある一つの数式で表すことができることを示唆している。 そこで原子間に働くすべての力を、原子間の結合を表すパラメータ(結合距離、結合角など)を変数とし、原子の種類や結合様式によって決まる関数で表す。そしてそれらの力によるポテンシャルエネルギーの総和が分子の持つエネルギーとなっていると考える。このような考えのもとに、様々な実験値をうまく説明できるような原子間のポテンシャルエネルギーを表す式を経験的に、あるいは量子化学的手法によって導き、それによって分子の立体配座の安定性や配座間のエネルギー差を計算する手法が分子力学法である。このポテンシャルエネルギーによる力の場を分子力場というため、分子力場計算ともいう。 分子力学法での分子のイメージは原子を球として、その球をその両端の原子の種類によって強さが決まったバネで結びつけたような感じである。それぞれのバネが引きのばされたり押し縮められたりして、すべてのバネのポテンシャルエネルギーの合計が最も小さくなったところで、その分子の持つエネルギーと立体配座が決まることになる。 分子力学法は計算量が量子化学的手法に比べて少ないため、原子数の多い分子においても容易に計算結果が得られるという利点がある。しかし、原子の種類や結合様式が異なるごとに別のポテンシャルエネルギーの式を使わなければならないため、前もって準備しておくパラメータの数が非常に多くなってしまうという欠点がある。 単純な分子力学法においては分子の持つポテンシャルエネルギーEは.

新しい!!: 分子動力学法と分子力学法 · 続きを見る »

分光法

プリズムによる光線の波長分割 分光法(ぶんこうほう、spectroscopy)とは、物理的観測量の強度を周波数、エネルギー、時間などの関数として示すことで、対象物の定性・定量あるいは物性を調べる科学的手法である。 spectroscopy の語は、元々は光をプリズムあるいは回折格子でその波長に応じて展開したものをスペクトル (spectrum) と呼んだことに由来する。18世紀から19世紀の物理学において、スペクトルを研究する分野として分光学が確立し、その原理に基づく測定法も分光法 (spectroscopy) と呼ばれた。 もともとは、可視光の放出あるいは吸収を研究する分野であったが、光(可視光)が電磁波の一種であることが判明した19世紀以降は、ラジオ波からガンマ線(γ線)まで、広く電磁波の放出あるいは吸収を測定する方法を分光法と呼ぶようになった。また、光の発生または吸収スペクトルは、物質固有のパターンと物質量に比例したピーク強度を示すために物質の定性あるいは定量に、分析化学から天文学まで広く応用され利用されている。 また光子の吸収または放出は量子力学に基づいて発現し、スペクトルは離散的なエネルギー状態(エネルギー準位)と対応することが広く知られるようになった。そうすると、本来の意味の「スペクトル」とは全く異なる、「質量スペクトル」や「音響スペクトル」など離散的なエネルギー状態を表現した測定チャートもスペクトルとよばれるようになった。また「質量スペクトル」などは物質の定性に使われることから、今日では広義の分光法は「スペクトル」を使用して物性を測定あるいは物質を同定・定量する技法一般の総称となっている。.

新しい!!: 分子動力学法と分光法 · 続きを見る »

分極率

分極率(ぶんきょくりつ、polarizability)とは、原子や分子の電子雲などがもつ電荷分布の相対的な偏りを表す物理量である。電荷分布は近くに存在するイオンや双極子の存在などによって引き起こされる外部電場によって歪められる。この歪められた電荷分布の通常の状態からの偏差が分極率である。.

新しい!!: 分子動力学法と分極率 · 続きを見る »

周期的境界条件

周期的境界条件(しゅうきてききょうかいじょうけん、英:Periodic boundary condition)は、境界条件の一つ。周期境界条件とも言う。.

新しい!!: 分子動力学法と周期的境界条件 · 続きを見る »

アリー・ウォーシェル

アリー・ウォーシェル(、、1940年11月20日 - )は、イスラエル・アメリカの生化学者、生物物理学者。彼は南カリフォルニア大学で化学と生化学の抜群教授を務めている。彼は2013年にノーベル化学賞を「複雑な化学系のためのマルチスケールモデルの開発」という理由でマイケル・レヴィット、マーティン・カープラスと共同受賞した。.

新しい!!: 分子動力学法とアリー・ウォーシェル · 続きを見る »

アルコールデヒドロゲナーゼ

アルコールデヒドロゲナーゼ (EC.1.1.1.1, EC.1.1.1.2, EC.1.1.1.71) はアルコールを酸化してアルデヒドにする反応を触媒する酵素。アルコール脱水素酵素とも呼ばれる。 人間の場合、少なくとも6種のアイソフォームが存在する。肝臓に多く存在し、エタノールを摂取した時に働く。 酵母のように、アルコール発酵する生物の場合、アセトアルデヒドをエタノールに還元する上記の逆反応が起きる。これによってNAD+が再生され、嫌気状態でも解糖系が続行できるようになる。酵母が作ったエタノールを、人間が全く逆の反応で戻していることになる。 ヒトではアルコール脱水素酵素は大部分が肝臓に存在し、少量が胃、腸、腎、網膜、脳に分布する。.

新しい!!: 分子動力学法とアルコールデヒドロゲナーゼ · 続きを見る »

アルゴリズム解析

アルゴリズム解析とは、アルゴリズムの実行に必要とされるリソース(時間や記憶領域)量を見積もることである。多くのアルゴリズムは任意長の入力を受け付けるよう設計されている。アルゴリズムの「効率」や「複雑さ」は一般に、入力長からそのアルゴリズムを実行するのに必要なステップ数(時間複雑性)や記憶領域サイズ(空間複雑性)への関数として表される。 アルゴリズム解析は計算複雑性理論の重要な一分野である。計算複雑性理論では、与えられた計算問題を解くアルゴリズムが必要とするリソースを理論的に見積もる。この見積もりにより効率的なアルゴリズムを設計する指針が得られることがある。 アルゴリズム解析ではふつう、漸近的(asymptotic)な意味で複雑性を見積もる。すなわち、ある程度大きな入力長の際の複雑性関数を見積もる。このためにO記法、Ω記法、Θ記法が用いられる。例えば、二分探索のステップ数は入力サイズの対数に比例し、これを O(log(n)) と表記したり、「対数時間」と称したりする。このような漸近的な見積もりを用いるのは、同じアルゴリズムでも実装の違いにより差が出るのを捨象するためである。異なる妥当な実装による効率の違いは定数倍に留まる。この定数を隠れた定数(hidden constant)と呼ぶ。 漸近的でない正確な効率がわかる場合もあるが、そのためには「計算モデル」と呼ばれるアルゴリズムの特定の実装を仮定する必要がある。計算モデルはチューリング機械のような抽象化された機械を使うか、個々の命令の実行時間が変化しないと仮定することが多い(例えば実際のコンピュータではキャッシュにヒットするかしないかでは大きく実行時間が異なるが、アルゴリズム解析では一般にそれを無視する)。例えば、二分探索で N 個のソートされた数から探索する場合、1回の参照を一定の単位時間でできるとした場合、回答を得るまでに最大で log2 N+1 単位時間を要する。.

新しい!!: 分子動力学法とアルゴリズム解析 · 続きを見る »

アルゴン

アルゴン(argon)は原子番号 18 の元素で、元素記号は Ar である。原子量は 39.95。周期表において第18族元素(希ガス)かつ第3周期元素に属す。.

新しい!!: 分子動力学法とアルゴン · 続きを見る »

アントン (スーパーコンピュータ)

アントン(Anton)は、D. E. Shaw Researchによって開発された超並列スーパーコンピュータ。タンパク質など生体高分子の分子動力学シミュレーションに特化したシステムであり、多数の専用集積回路(ASIC)が、特殊な三次元トーラス状の高速通信ネットワークにより接続されている。 理研で開発されたMDGRAPE-3など、以前の分子動力学シミュレーション専用機ではASICと汎用プロセッサとを併用していたのに対し、アントンは計算のすべてをASICにより行う。 アントンのASICは、2つのサブシステムから構成されている。第一のサブシステム、high-throughput interaction subsystem (HTIS)で、静電相互作用とファンデルワールス力の計算の大部分が実行される。このサブシステムは、800 MHzで動作する32のモジュールにより構成されており、Systolic arrayに類する方式で完全にパイプライン化されている。第二のサブシステム、flexible subsystemにより、結合長などの局所的相互作用の計算や、長距離静電相互作用の算出に必要な高速フーリエ変換が実行される。このサブシステムには、Tensilica社製の4個の汎用コアと、ジオメトリーコアと呼ばれる8個のSIMDコアが含まれており、動作クロックは400 MHzである。 通信ネットワークは三次元トーラス状になっており、各々のチップが6つのノード間接続により、入出力バンド幅607.2ギガビット毎秒で結ばれている。各ノード間接続は、等価な2個の一方向リンクであり、それぞれのリンクが50.6ギガビット毎秒のバンド幅である。さらに、各一方向リンクは11のレーンから構成されており、各レーンは4.6ギガビット毎秒の差動ペアである。アントンにおけるネットワークのホップ単位レイテンシは50ナノ秒である。それぞれのASICにDRAMが接続されていることで、大規模なシミュレーションが可能となっている。 アントン1台(512ノード)の計算性能は、23,558原子からなるタンパク質と水の混合系に対して、1日あたり17マイクロ秒(=17,000ナノ秒)のシミュレーションが実行可能である。比較として同様のシミュレーションを、数百から数千コアの一般的な並列コンピュータで行った場合、1日あたり数百ナノ秒程度となる。512ノードの初代アントンは2008年10月に稼働開始した。 アントンという名称は、アントニ・ファン・レーウェンフックに由来する。レーウェンフックは、当時としては高性能な顕微鏡を自作し、はじめて種々の微生物や細胞の観察を行った人物であり、しばしば「顕微鏡の父」と称される。.

新しい!!: 分子動力学法とアントン (スーパーコンピュータ) · 続きを見る »

アンダーセン・サーモスタット

アンダーセン・サーモスタット(Andersen thermostat)は、定温条件を維持するための分子動力学法における提案である。選ばれた原子または分子の速度の再配分に基づいている。新しい速度は任意の温度についてのによって与えられる。.

新しい!!: 分子動力学法とアンダーセン・サーモスタット · 続きを見る »

エバルトの方法

バルトの方法(エバルトのほうほう、Ewald method)は、分子動力学法、量子化学的手法、バンド計算手法などで、単位胞(またはスーパーセル)内の原子核(またはイオン芯)同士のクーロン相互作用を効率良く計算する手法である。 実空間と逆格子空間のどちらでも発散してしまうクーロン相互作用を、実空間での計算が都合のよい部分と、逆格子空間での計算が都合のよい部分との2つに分けて別々に計算を行い、これら2つの計算結果の和が求めるべき答となる。.

新しい!!: 分子動力学法とエバルトの方法 · 続きを見る »

エルゴード理論

ルゴード理論(エルゴードりろん、英語:ergodic theory)は、ある力学系がエルゴード的(ある物理量に対して、長時間平均とある不変測度による位相平均が等しい)であることを示す、すなわちエルゴード仮説の立証を目的とする理論。この仮説は、SinaiらのDynamical billiardsの例などで正しいという証明が与えられているが、統計力学の基礎とは無関係である。また、物理学でのエルゴード性を抽象化した、数学における保測変換の理論をそう呼ぶこともある。;長時間平均;位相平均 上記2つの平均が同じような値(あるいは関数)を得られるものについて、エルゴード的ということが出来る。.

新しい!!: 分子動力学法とエルゴード理論 · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

新しい!!: 分子動力学法とエントロピー · 続きを見る »

エンタルピー

ンタルピー()とは、熱力学における示量性状態量のひとつである。熱含量()とも。エンタルピーはエネルギーの次元をもち、物質の発熱・吸熱挙動にかかわる状態量である。等圧条件下にある系が発熱して外部に熱を出すとエンタルピーが下がり、吸熱して外部より熱を受け取るとエンタルピーが上がる。 名称が似ているエントロピー()とは全く異なる物理量である。.

新しい!!: 分子動力学法とエンタルピー · 続きを見る »

カノニカル分布

正準分布(せいじゅんぶんぷ)、カノニカル分布(canonical distribution)は、統計力学において系の微視的状態を表現する統計集団の一つである正準集団、カノニカルアンサンブル(canonical ensemble)が従う統計分布である。正準集団とは、との間でのみエネルギーを自由にやりとりできる系を表現する統計集団である。正準分布は、小正準分布、大正準分布とは体積が十分に大きい極限(すなわちエネルギーや粒子の出入りが無視できる極限)において熱力学的に等価である。.

新しい!!: 分子動力学法とカノニカル分布 · 続きを見る »

カー・パリネロ法

ー・パリネロ法(カーパリネロほう、Car-Parrinello method、CP法)は、1985年、カー(R. Car)とパリネロ(M. Parrinello)によって考案されたバンド計算の手法である。従来用いられていた行列要素の対角化を行わずに固有値(及び固有ベクトル)を求めることにより、計算を大幅に高速化した。これにより、系の電子状態と共に、その構造の最適化(この部分は古典的分子動力学法を用いる)も可能とした。.

新しい!!: 分子動力学法とカー・パリネロ法 · 続きを見る »

カプシド

プシド(capsid)は、ウイルスゲノムを取り囲むタンパク質の殻のことを指し、カプソメアによって構成されている。カプシドの構造はウイルスゲノムとカプシドとの立体配列により、立方対称性、ラセン対称性、非対称性のものがある。カプシドの構成単位であるカプソメアは暗黒期に他のタンパク質とともに合成される。その数はウイルスによって一定である。ウイルスによってはカプシドの外側にエンベロープを持つものもある。カプシドはウイルスゲノムを核酸分解酵素などから保護し、細胞のレセプターへの吸着に関与している。カプシドはウイルスが細胞に侵入後、細胞またはウイルス自身の酵素によって取り除かれる。この過程を脱殻と呼ぶ。ウイルスゲノムとカプシドの複合体をヌクレオカプシド(nucleocapsid)と呼ぶ。.

新しい!!: 分子動力学法とカプシド · 続きを見る »

クラスター (物質科学)

ラスター (cluster) は集合体や塊を指す英語であるが、物質科学においては同種の原子あるいは分子が相互作用によって数個~数十個、もしくはそれ以上の数が結合した物体を指す。 それぞれの原子や分子同士を結びつける相互作用は、ファンデルワールス力や静電的相互作用、水素結合、金属結合、共有結合などが挙げられている。 クラスターのうち、電荷を帯びたものをクラスターイオンと呼ぶ。 代表的なクラスターとして、炭素原子60個が結合してサッカーボール状の構造を持つC60フラーレンがある。C60フラーレンは共有結合クラスターに分類される。 これらは、いわゆるバルクとも孤立した原子・分子とも違う状態であり(少数多体系・有限多体系と呼ばれる)、バルク-孤立原子・分子の間の新しい物質相であると考えられている。クラスターは、そのサイズに依存した特異的性質を示し、新規磁性・触媒材料など、応用面でも注目されている。.

新しい!!: 分子動力学法とクラスター (物質科学) · 続きを見る »

クーロンの法則

ーロンの法則(クーロンのほうそく、Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。 ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられ、シャルル・ド・クーロンが1785年に法則として再発見した。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。 また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。.

新しい!!: 分子動力学法とクーロンの法則 · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: 分子動力学法とケイ素 · 続きを見る »

ゲルマニウム

ルマニウム(germanium )は原子番号32の元素。元素記号は Ge。炭素族の元素の一つ。ケイ素より狭いバンドギャップ(約0.7 eV)を持つ半導体で、結晶構造は金剛石構造である。.

新しい!!: 分子動力学法とゲルマニウム · 続きを見る »

ゴーシェ病

Acid β-グルコセレブロシダーゼ ゴーシェ病(ゴーシェびょう、Gaucher's disease)は1882年、フランスの医師によって発見された病気で、遺伝的要因により生まれつき、グルコセレブロシダーゼという酵素が不足であったり欠損していたりして活性が低下するため、グルコセレブロシド(糖脂質)をセラミドに分解できず、肝臓、脾臓、骨などにグルコセレブロシドが蓄積してしまう疾患である。またゴーシェ病は、ライソゾーム病、先天性代謝異常症、常染色体劣性遺伝に分類される。 世界で確認されている患者数は約5千人で、日本国内では100人に満たない程度という希少な難病である。特にユダヤ系の人種に多く見られる。一般的な治療薬として認可されているセレザイムは非常に薬価が高いため、現在ライソゾーム病として特定疾患に認定されている。.

新しい!!: 分子動力学法とゴーシェ病 · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

新しい!!: 分子動力学法とタンパク質 · 続きを見る »

タンパク質構造

タンパク質構造(Protein structure)では、タンパク質の構造について記す。タンパク質は全ての生物が持つ、重要な生体高分子の1つである。タンパク質は炭素、水素、窒素、リン、酸素、硫黄の原子から構成された、残基と言われるアミノ酸のポリマーである。ポリペプチドとも呼ばれるこのポリマーは20種類のL-α-アミノ酸の配列からできている。40以下のアミノ酸から構成されるものは、しばしばタンパク質ではなくペプチドと呼ばれる。その機能を発現するために、タンパク質は水素結合、イオン結合、ファンデルワールス力、疎水結合などの力によって、特有のコンフォメーションをとるように折り畳まれる。分子レベルのタンパク質の機能を理解するには、その三次元構造を明らかにしなければならない。これは構造生物学の研究分野で、X線回折や核磁気共鳴分光法などの技術が使われる。 アミノ酸残基の数は特定の生化学的機能を果たす際に重要で、機能を持ったドメインのサイズとしては40から50残基が下限となる。タンパク質自体の大きさはこの下限から数1000残基のものまで様々で、その平均は約300残基と見積もられている。多くのG-アクチンがアクチン繊維(F-アクチン)を作るように、多くのタンパク質サブユニットが集合して1つの構造を作ることもある。.

新しい!!: 分子動力学法とタンパク質構造 · 続きを見る »

サーモスタット

ーモスタット (Thermostat) とは、ある系の温度を調整するための装置であり、系の温度を設定された温度の付近に保つ働きを持つ。.

新しい!!: 分子動力学法とサーモスタット · 続きを見る »

動力学

動力学(どうりきがく、dynamics)は、物理学における古典物理学の一つの分野で、物体の動作における力の影響を扱うものである。 もとは力学 の一部から力の要因を考慮するものとしないもの(運動学、kinematics)とに区別され、後に力の要因を考慮する力学から平衡状態を扱う静力学(statics)と非平衡状態をあつかう動力学へ区別された。量子力学においては、動力学は量子電磁力学や量子色力学のように、どのように力が量子化されているか、という形で取り扱われている。.

新しい!!: 分子動力学法と動力学 · 続きを見る »

CHARMM

CHARMM(チャーム、Chemistry at Harvard Macromolecular Mechanics)は、多粒子系で広く応用されている分子動力学法のための力場の名称であり、それらと関連した分子動力学シミュレーションならびに解析パッケージの名称である。CHARMM開発プロジェクトにはマーティン・カープラスと彼のハーバード大学の研究グループと共に世界中の開発者のネットワークがCHARMMプログラムの開発およびメンテナンスに関わっている。このソフトウェアのライセンスは学術界で研究している人物およびグループに対して有償で提供されている。ソースコード (charmm) は学界 、政府関係、非営利の研究室には無償で提供されている。企業向けにはCHARMmと呼ばれる商用版がある。.

新しい!!: 分子動力学法とCHARMM · 続きを見る »

立体配座

立体配座(りったいはいざ、Conformation)とは、単結合についての回転や孤立電子対を持つ原子についての立体反転によって相互に変換可能な空間的な原子の配置のことである。 二重結合についての回転や不斉炭素についての立体反転のように通常の条件では相互に変換不可能な空間的な原子の配置は立体配置という。.

新しい!!: 分子動力学法と立体配座 · 続きを見る »

等温定圧集団

等温定圧集団(とうおんていあつしゅうだん、isothermal–isobaric ensemble)は、一定の温度T \,および一定の圧力P \,を維持する統計力学的集団(アンサンブル)である。粒子の数N \,も一定に保たれるため、NpTアンサンブルとも呼ばれる。化学反応は通常一定の圧力条件下で行われるため、この集団は化学において重要な役割を果たしている。分配関数は、正準集団Z(N, V, T) \,の分配関数の加重和として書くことができる。 上式において、\beta.

新しい!!: 分子動力学法と等温定圧集団 · 続きを見る »

等方性媒質

等方性媒質とは、結晶の分子・イオンの空間分布が方向に依存しない物質のことである。.

新しい!!: 分子動力学法と等方性媒質 · 続きを見る »

結合長

分子構造において、結合長(Bond length)または結合距離(Bond distance)は、分子内の2つの原子の間の平均距離である。.

新しい!!: 分子動力学法と結合長 · 続きを見る »

統計集団

統計集団(とうけいしゅうだん、statistical ensemble)とは、統計力学における基本的な概念の一つで、巨視的に同じ条件下にある、力学的に同じ系を無数に集めた仮想的な集団である。統計的(とうけいてき)アンサンブル、確率集団(かくりつしゅうだん)、ギブズ集団、あるいは単にアンサンブルとも呼ばれる。 巨視的には同じ条件下にあっても、力学系が取り得る力学的な状態は一つに定まらない。無数に集めた系の内である状態を取っている系の割合を、系がその状態を取る確率であると考える。この確率で重み付けした加重平均をアンサンブル平均と呼ぶ。.

新しい!!: 分子動力学法と統計集団 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: 分子動力学法と炭素 · 続きを見る »

生体物質

生体物質(せいたいぶっしつ、living substance, biological matter)は、生物の体内に存在する化学物質の総称。 生体を構成する基本材料である生体高分子(核酸、タンパク質、多糖)や、これらの構成要素であるヌクレオチドやヌクレオシド、アミノ酸、各種の糖など、ならびに脂質やビタミン、ホルモンなどを指す。炭素と水素を中心に、窒素・酸素・リン・硫黄を構成元素とする物が多い。また、ヘモグロビンや葉緑素など、金属元素を含むものも存在する。.

新しい!!: 分子動力学法と生体物質 · 続きを見る »

生化学

生化学(せいかがく、英語:biochemistry)は生命現象を化学的に研究する生化学辞典第2版、p.713 【生化学】生物学または化学の一分野である。生物化学(せいぶつかがく、biological chemistry)とも言う(若干生化学と生物化学で指す意味や範囲が違うことがある。生物化学は化学の一分野として生体物質を扱う学問を指すことが多い)。生物を成り立たせている物質と、それが合成や分解を起こすしくみ、そしてそれぞれが生体システムの中で持つ役割の究明を目的とする。.

新しい!!: 分子動力学法と生化学 · 続きを見る »

生物物理学

生物物理学(biophysics)は、生命システムを物理学と物理化学を用いて理解しようと試みる学際科学である。生物物理学は、分子スケールから一個体、果ては生態系まで、全階層の生物学的組織を研究対象とする。生化学、ナノテクノロジー、生物工学、農学物理学、システム生物学と密接に関係し、研究領域を共有することが多い。 分子生物物理学は、生化学や生物物理学が扱う生物学の問題に取り組むが、問題解決に対して定量的なアプローチを取ることが常である。一細胞内におけるさまざまなシステム(RNA生合成、RNA生合成、タンパク質生合成など)の間に起こる相互作用の理解、およびこれら相互作用の調節機構の理解に挑戦する。そしてこれらの問題を解くために、多種多様な実験手法が用いられる。 蛍光イメージング、電子顕微鏡法、X線結晶構造解析、核磁気共鳴分光法(NMR)、原子間力顕微鏡法(AFM)を用いて、生物学的に重要な構造体の可視化を行うことが多い。構造体のコンフォメーション変化の計測には、二重偏光干渉測定法(DPI)や円偏向二色性分析法(CD)などの技術を用いることが多い。光学ハサミや原子間力顕微鏡を用いて分子を直接操作する技術も、力や距離がナノスケールで問題となる生命現象をモニターする時に利用される。分子生物物理学者によく見られる特徴として、複雑な生命現象を数々の相互作用単位から成るシステムとして捉えることが多く、このシステムは統計力学、熱力学、化学反応速度論の立場から理解することが可能であると考えることが多い。多岐にわたる諸分野からの知識や実験手法などを用いることで、個々の分子や複合体間に起こる相互作用、または構造体そのものを直接的に観察、モデル化、操作などを行うことが出来るようになった。 生物物理学は、構造生物学や酵素反応速度論といった分子細胞生物学的なテーマを扱うことが伝統的に多かったが、今日では研究対象となる分野が飛躍的に拡大しつつある。生物物理学では物理学、数学、統計学などから派生したモデルや実験手法を、組織や臓器、生物集団や生態系などさらに大きなシステムに応用することが、近年ではますます多くなっている。.

新しい!!: 分子動力学法と生物物理学 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

新しい!!: 分子動力学法と熱力学 · 続きを見る »

界面

面(かいめん、interface)とは、ある均一な液体や固体の相が他の均一な相と接している境界のことである。この「他の均一な相」が気体もしくは真空であるとき、界面を特に表面(surface)とよぶ(例外もある)。ただし、お互いが完全に混ざり合うことはしない(混ざり合うと界面でなくなる。ただし、界面付近数原子層程度で互いの原子からなる化合物を形成する場合はある)。界面は気相と液相、液相と液相、液相と固相、固相と固相の二相間で形成される。界面を構成する分子・原子は、界面を挟んでいる相から連続的に続いているにもかかわらず、相内部とは性質が異なり、膜のようなはたらきをする。たとえば界面では光線が反射や屈折、散乱、吸収を起こし、界面間には界面張力がはたらく。 エレクトロニクス産業の要請によって固体材料の薄膜やナノテクノロジーを研究する科学分野が重要性を帯びており、特に固体同士の界面は固相界面と呼ばれて界面研究の重要分野となっている。単に界面といえば固相界面を指す場合が多い。 学問上は界面化学および表面物理学で取り扱われる。.

新しい!!: 分子動力学法と界面 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 分子動力学法と物理学 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: 分子動力学法と物性物理学 · 続きを見る »

DNA超らせん

図1 DNAの二重らせん構造 DNA超らせん(DNAちょうらせん、DNA superhelix)とは、DNAの二重らせんにさらにねじれを導入したときに生み出される高次のらせん構造のことをいう。DNAスーパーコイル(DNA supercoil)ともいう。.

新しい!!: 分子動力学法とDNA超らせん · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

新しい!!: 分子動力学法と銅 · 続きを見る »

運動 (物理学)

物理学における運動(うんどう、motion)とは、物体の参照系との位置関係が変化することである。 地球の表面では、常に重力が働いていること、ベアリングなど、それなりに使い物になる摩擦をわずかにする技術や工学の発展は中世より後であったこと、空気抵抗の存在などから、いわゆる「アリストテレス力学」と呼ばれるそれのような、極めて思弁的哲学的なある種の独特な科学的論理に基づく「運動」観すら古代にはあった。 その後時代が過ぎるにつれ、そのような「神学」からの離脱に成功した哲学や、やがては科学により、またケプラーやガリレイやニュートンといった人々により、相対速度(ガリレイ変換)・慣性(運動の第1法則)・質量と加速度と力の関係(運動の第2法則)・作用と反作用(運動の第3法則)といった力学の(運動の)基本原理がうちたてられていった。後述する相対論的力学に対して、ニュートン力学という(なお、古典力学という語は相対論までをも含み、量子力学に対する語である)。 しかし、ニュートンには『光学』という著書もあるように、その当時から既に物理学の対象であった光の速さは、人類には謎であった。ニュートン力学の基本的な考え方とされる「絶対時間と絶対空間」についても、むしろ仮定であったと見る向きもある。やがて光速が測定され、マクスウェルによって示された電磁方程式により電磁波の速度がわかると、それが光速と一致すること、そして、どんな場合でもその速度が同じ、という、それまでの物理学における考え方からはどうしても奇妙な現象をどう説明するか、に悩まされることになった。 (詳細は特殊相対性理論の記事を参照)各種の測定結果という事実をなんとかして説明する理論はあれこれと提案されはしたが、時間も空間も相対的である、という驚くべき転回により全てを説明したのはアインシュタインだった。ニュートン力学における運動は、3次元ユークリッド空間内における位置と、時刻、という独立した2要素で指定できるものと言えるが、相対論的には運動は、時間と空間が互いに関連したミンコフスキー時空における線のようなものとなる。アインシュタインによるこれに続く、加速度による見掛けの重力と万有引力による重力を同じもの(等価原理)とした一般相対性理論により、古典力学は完成を見た。 * Category:力学 Category:物理学の概念.

新しい!!: 分子動力学法と運動 (物理学) · 続きを見る »

非経験的分子軌道法

非経験的分子軌道法(ひけいけんてきぶんしきどうほう、ab initio molecular orbital method)は、量子化学に基づく計算化学手法である。 非経験的分子軌道法では、ハートリー-フォック方程式(正確には、閉殻系の場合はRoothaan-Hall方程式、開殻系の場合はPople-Nesbet方程式である)を解くために必要な分子積分を、実験値に置き換えたり省略したりせずにすべて計算する。物理定数以外の実験値を全く使用せずに分子軌道を計算するため、ab initio MO法、ab initio分子軌道法とも呼ばれる。 ab initioという用語は、ベンゼンの励起状態に関する半経験的研究においておよびら共同研究者によって、量子化学において初めて使われた。背景はパーによって詳述されている。「量子力学の第一原理から」という現代的意味で用いたのは、Chenやローターンが初めてで、AllenおよびKaroは論文のタイトルにも用いて明確にこの用語を定義した。 ほとんどの場合、シュレーディンガー方程式を解くために用いられる基底関数系(大抵LCAOアンザッツから構築される)は完全ではなく、イオン化や散乱過程と関連したヒルベルト空間に広がらない(を参照)。ハートリー-フォック法ならびに配置間相互作用法では、この近似によってシュレーディンガー方程式を「単純」なの固有値方程式として扱うことができ、解の集合が得られる。.

新しい!!: 分子動力学法と非経験的分子軌道法 · 続きを見る »

静電気学

静電気学(せいでんきがく、または静電学、Electrostatics)は静止またはゆっくり動く電荷による現象を扱う科学の一分野である。 古典古代より、琥珀のような物質をこすると軽い粒子を引き寄せることが知られていた。英語においては、ギリシャ語で琥珀をあらわす という単語が electricity(電気)の語源となった。静電現象の原因となっているのは、電荷が互いに働かせる力である。この電荷による力はクーロンの法則によって記述される。静電的に誘起された力はやや弱いとみなされがちだが、電子と陽子間に働く静電力(水素原子を作り出している)は、同粒子間に働く重力の1040倍もの強さがある。 静電現象には数多くの事例があり、パッケージからはがしたプラスチック包装紙が手に吸い付くという身近で単純なものから、穀物サイロがひとりでに爆発するという現象まである。さらに生産中に電子部品が破損したりと害になることもあれば、一方ではコピー機の原理に用いられていたりする。静電気学には物体の表面に他の物体の表面が接することにより、電荷が蓄積されるという現象が関わっている。荷電交換は2つの表面が接触し、離れるときにはいつでも起きているものの、表面のうちの少なくともどちらか一方が高い電気抵抗をもっていなければ通常その効果には気づかない。高い抵抗をもつ表面には電荷が長時間蓄えられ、その効果が観測されるためである。蓄えられた電荷は接地へとゆっくり減少してゆくか、放電によってすぐに中性化される。例えば静電気ショックの現象は、不導体の表面と接触することにより人体に蓄えられた電荷が、金属などに触れたときに一気に放電し、中性化する現象である。.

新しい!!: 分子動力学法と静電気学 · 続きを見る »

表面

表面(ひょうめん、英:surface)は、.

新しい!!: 分子動力学法と表面 · 続きを見る »

表面科学

表面科学(ひょうめんかがく、英語:surface science)は表面または界面を扱う自然科学の一分野のこと。理論、実験両面から様々な研究が行われている。物理学を重視した表面科学を特に表面物理学という。 物質の表面は、物質の吸着と脱離、電子的な不安定さ等によって測定することが難しい状態であった。実際に表面の構造が確認できるようになったのは、1950年代に高真空状態にすることで、表面に余計な原子・分子などが付着してない洗浄度を確保できるようになってからである。 表面科学の複雑さから、ノーベル物理学賞受賞者のヴォルフガング・パウリは「固体は神がつくりたもうたが、表面は悪魔がつくった」と言い残している。.

新しい!!: 分子動力学法と表面科学 · 続きを見る »

複雑系

複雑系(ふくざつけい、complex system)とは、相互に関連する複数の要因が合わさって全体としてなんらかの性質(あるいはそういった性質から導かれる振る舞い)を見せる系であって、しかしその全体としての挙動は個々の要因や部分からは明らかでないようなものをいう。 これらは狭い範囲かつ短期の予測は経験的要素から不可能ではないが、その予測の裏付けをより基本的な法則に還元して理解する(還元主義)のは困難である。系の持つ複雑性には非組織的複雑性と組織的複雑性の二つの種類がある。これらの区別は本質的に、要因の多さに起因するものを「組織化されていない」(disorganized) といい、対象とする系が(場合によってはきわめて限定的な要因しか持たないかもしれないが)創発性を示すことを「組織化された」(organized) と言っているものである。 複雑系は決して珍しいシステムというわけではなく、実際に人間にとって興味深く有用な多くの系が複雑系である。系の複雑性を研究するモデルとしての複雑系には、蟻の巣、人間経済・社会、気象現象、神経系、細胞、人間を含む生物などや現代的なエネルギーインフラや通信インフラなどが挙げられる。 複雑系は自然科学、数学、社会科学などの多岐にわたる分野で研究されている。また、複雑系科学の記事も参照のこと。.

新しい!!: 分子動力学法と複雑系 · 続きを見る »

計算化学

計算化学(けいさんかがく、computational chemistry)とは、計算によって理論化学の問題を取り扱う、化学の一分野である。複雑系である化学の問題は計算機の力を利用しなければ解けない問題が多いため、計算機化学と呼ばれることもあるが、両者はその言葉の適用範囲が異なっている。 近年のコンピュータの処理能力の発達に伴い、実験、理論と並ぶ第三の研究手段と考えられるまでに発展した。主に以下の手法を用いて化学の問題を取り扱う。.

新しい!!: 分子動力学法と計算化学 · 続きを見る »

計算物理学

計算物理学(けいさんぶつりがく、computational physics)は、解析的に解けない物理現象の基礎方程式を計算機(コンピュータ)を用いて数値的に解くことを目的とする物理学の一分野である。.

新しい!!: 分子動力学法と計算物理学 · 続きを見る »

高分子

分子(こうぶんし)または高分子化合物(こうぶんしかごうぶつ)(macromolecule、giant molecule)とは、分子量が大きい分子である。国際純正・応用化学連合(IUPAC)の高分子命名法委員会では高分子macromoleculeを「分子量が大きい分子で、分子量が小さい分子から実質的または概念的に得られる単位の多数回の繰り返しで構成した構造」と定義し、ポリマー分子(polymer molecule)と同義であるとしている。また、「高分子から成る物質」としてポリマー(重合体、多量体、polymer)を定義している。すなわち、高分子は分子であり、ポリマーとは高分子の集合体としての物質を指す。日本の高分子学会もこの定義に従う。.

新しい!!: 分子動力学法と高分子 · 続きを見る »

超並列マシン

超並列マシン (ちょうへいれつマシン、Massively parallel machine) は1990年代から台頭してきた、並列計算機の中で規模の大きなもの(CPU数の多いもの)を言う。大規模クラスターマシン、大規模ワークステーションクラスター、地球シミュレーターなども超並列マシンの範疇に入れることができる。時代と共に並列度は大きくなり、CPU性能は向上するため、何個以上のCPU数(或いは性能)で超並列であるというはっきりとした定義はない。 超並列マシンは分散メモリ型のコンピュータシステムであり、多数のノードから構成され、各ノードは基本的に独立したコンピュータとなっている。本来の超並列マシンはnCUBEやコネクションマシンなどのように、ほとんどのノードがCPUとメモリとノード間接続用の通信ポートのみで構成されるものであった。ノード間通信にはMPIのような標準的なプロトコルを使用してメッセージをやり取りする。2005年現在のスーパーコンピュータはほとんどが超並列マシンである。超並列マシンの性能は、実行しようとするアプリケーションの並列性と、スレッド間の通信量に左右される。アプリケーションの並列性が高ければ多くのノードに展開して並列実行できるため、性能向上が期待できる。しかし、共有メモリ型と異なり、あるスレッドの実行結果をメモリに置くだけでは他のスレッドからは見えないため、通信が必要となる。したがって、計算途中に他のスレッドの結果を待ち合わせなければならないようなアプリケーションではノード数に比例した性能向上は期待できない。超並列マシンでの計算性能の向上は研究の活発な領域である。.

新しい!!: 分子動力学法と超並列マシン · 続きを見る »

能勢=フーバー・サーモスタット

能勢=フーバー・サーモスタット(のせ=フーバー・サーモスタット、Nosé–Hoover thermostat)は、等温分子動力学シミュレーションのための決定的アルゴリズムである。初めに能勢修一によって開発され、によってさらに改良された。能勢=フーバー・サーモスタットの熱浴はただ一つの想像上の粒子から成るが、シミュレーション系は現実的な定温条件(正準集団)を満たす。そのため、能勢=フーバー・サーモスタットは定温分子動力学シミュレーションのための最も正確かつ効率的な手法の一つとして一般的に使用されている。.

新しい!!: 分子動力学法と能勢=フーバー・サーモスタット · 続きを見る »

脂質二重層

脂質二重層は細胞膜の大部分を占めるリン脂質による膜で、これに各種のタンパクや糖脂質などが絡んで細胞膜が形成される。.

新しい!!: 分子動力学法と脂質二重層 · 続きを見る »

重合体

重合体(じゅうごうたい)またはポリマー(polymer)とは、複数のモノマー(単量体)が重合する(結合して鎖状や網状になる)ことによってできた化合物のこと。このため、一般的には高分子の有機化合物である。現在では、高分子と同義で用いられることが多くなっている。ポリマー(polymer)の poly- は接頭語で「たくさん」を意味する。 2種類以上の単量体からなる重合体のことを特に共重合体と言う。 身近なものとしては、繊維に用いられるナイロン、ポリ袋のポリエチレンなどの合成樹脂がある。また、生体内のタンパク質は、アミノ酸の重合体である。.

新しい!!: 分子動力学法と重合体 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 分子動力学法と量子力学 · 続きを見る »

量子化学

量子化学(りょうしかがく、quantum chemistry)とは理論化学(物理化学)の一分野で、量子力学の諸原理を化学の諸問題に適用し、原子と電子の振る舞いから分子構造や物性あるいは反応性を理論的に説明づける学問分野である。.

新しい!!: 分子動力学法と量子化学 · 続きを見る »

離散化

finite element method. 数学において、離散化 (discretization) 連続関数、モデル、変数、方程式を離散的な対応する物へ移す過程のこと。この過程は普通、それらをデジタルコンピュータ上での数値評価および実装に適したものにするために最初に行われるステップである。二分化 (dichotomization) は離散クラスの数が2である離散化の特別な場合であり、これにより連続変数を2値変数として近似することができる(2項分類のようにモデリングの目的で2分法を作成する)。 離散化は離散数学にも関係しており、の重要な成分である。この文脈において、離散化は、複数の離散変数が集約されるもしくは複数の離散圏が融合する場合のときのように、変数もしくは圏のグラニュラリティの変更をさすこともある。 連続的なデータが離散化されるときは常にある程度の離散化誤差がある。目標は手元のモデル化の目的では無視できると考えられるレベルまでその量を減らすことである。 離散化と量子化 (quantization) という用語はしばしば同じ意味を持つが、必ずしも同じ意味というわけではない(具体的には2つの用語は意味領域を共有している)。離散化誤差と量子化誤差についても同様である。 離散化に関する数学的方法にはとがある。.

新しい!!: 分子動力学法と離散化 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: 分子動力学法と電荷 · 続きを見る »

透過型電子顕微鏡

透過型電子顕微鏡(とうかがたでんしけんびきょう、Transmission Electron Microscope; TEM)とは、電子顕微鏡の一種である。観察対象に電子線をあて、透過してきた電子線の強弱から観察対象内の電子透過率の空間分布を観察するタイプの電子顕微鏡のこと。また、電子の波動性を利用し、試料内での電子の回折の結果生じる干渉像から観察対象物の構造を観察する場合もある。物理学、化学、工学、生物学、医学などで幅広く用いられている。.

新しい!!: 分子動力学法と透過型電子顕微鏡 · 続きを見る »

陰溶媒

溶媒(いんようばい、英語:Implicit solvent)は、溶媒を分子動力学法やその他の分子力学法でほとんど使用される個々の露な溶媒分子(陽溶媒)の代わりに連続媒体として表現する一つの方式である。連続溶媒と呼ばれることもある。.

新しい!!: 分子動力学法と陰溶媒 · 続きを見る »

Folding@home

Folding@home(FAH、フォールディング・アット・ホーム)は、2000年10月から北アメリカのスタンフォード大学を中心に行われている分散コンピューティングプロジェクトおよび、それに使用されているコンピュータプログラム。 たんぱく質の折りたたみ構造を解析することで、これに関係する様々な疾病(アルツハイマー病、がん、パーキンソン病、狂牛病など)の治療に役立てるのが目的。このプログラムをダウンロードし、パーソナルコンピュータなどで動作させると研究に必要な計算が行われ、その計算結果がインターネットを通じてスタンフォード大学に送られる。また、このプロジェクトではCPUだけでなく、GPGPUによる処理も行う事が出来る。.

新しい!!: 分子動力学法とFolding@home · 続きを見る »

GROMACS

GROMACS(グローマックス、Groningen Machine for Chemical Simulations、グローニンゲン・マシン・フォー・ケミカル・シミュレーションズ)は、フローニンゲン大学で開発された分子動力学シミュレーションのソフトウェアパッケージである。現在は世界中の大学と研究所の貢献者によって維持管理されている。フリー、オープンソースソフトウェアであり、GNU General Public License(GPL)と、バージョン4.6からはGNU Lesser General Public License(LGPL)の下で公表されている。 GROMACSは現在利用可能な最速かつ最も人気のあるソフトウェアパッケージの一つであり、中央処理装置(CPU)およびGraphics Processing Unit(GPU)上で動作する。 GROMACSは並列計算を前提としたプログラミングがなされている。プログラムの大部分はC言語で記述されており、同じグループが以前に開発したGROMOS(FORTRAN 77ベース)が参考にされている。バージョン4.6時点において、SSEやAVX、HPC-ACEなどの拡張命令を用いたアセンブリ言語のルーチンが実装されており、高速な計算が可能となっている。 力場はGROMACS、GROMOS、OPLS-AA、AMBER、CHARMMが標準で使用可能である。.

新しい!!: 分子動力学法とGROMACS · 続きを見る »

IBM 704

NASAの IBM 704 (1957) LLNL.) IBM 704はIBMが1954年4月に発表したコンピュータ。浮動小数点数演算ハードウェアを量産機として世界で初めて採用した。704 は IBM 701 のアーキテクチャと実装を大幅に強化したもので、互換性はない。.

新しい!!: 分子動力学法とIBM 704 · 続きを見る »

NAMD

NAMD (NAnoscale Molecular Dynamics program)は、フリーウェアの分子動力学シミュレーションパッケージの一つである。Charm++並列プログラミングモデルを用いて書かれ、並列効率の高さで知られており、大規模な系(数百万の原子)をシミュレートするためにしばしば使われている。NAMDはイリノイ大学アーバナ・シャンペーン校のTheoretical and Computational Biophysics Group (TCB) とParallel Programming Laboratory (PPL) との共同研究によって開発されている。 NAMDは1995年にNelsonらによって、可視化コードであるVMDとの連携によってインタラクティブなシミュレーションを可能にする並列分子動力学コードとして導入された。NAMDは、多くの機能を追加し、数千のプロセッサにスケーリングされ、成熟している。2014年10月現在の最新安定版は2.10である。 非商用利用する個人、学術機関、社内ビジネス目的の企業は、コンパイル済みのバイナリとソースコードの両方が無償で入手可能である。.

新しい!!: 分子動力学法とNAMD · 続きを見る »

QM/MM

QM/MM (Quantum Mechanics/Molecular Mechanics) 法は、正確な量子力学的手法 (QM) と高速な分子力学法 (MM) の各々の長所を組み合わせた計算化学の手法である。本手法によって、溶液やタンパク質における化学過程のような、大規模な系の取り扱いが可能になった。QM/MM法は1976年にウォーシェルとレビットの論文中で初めて発表された。ウォーシェルとレビットはカープラスと共に、「複雑な化学系のためのマルチスケールモデルの開発」という受賞理由で、2013年にノーベル化学賞を受賞した。 QM/MM法の大きな長所は効率が良いことである。ほとんどの素朴な分子力学法 (MM) の計算コストはO(N2) に比例する(ここでNは系の原子数を表す)。これは主に静電相互作用の項によるものである。 しかし、カットオフ半径、 周期系におけるペアリストの更新、粒子メッシュエバルト (PME) 法といった各手法を導入することで、計算量はO(N) からO(N2) 程度に削減できる。 換言すると、系の原子数を倍にしても、その計算時間は2倍から4倍程度に収まることを意味する。 一方で、単純な第一原理計算の計算コストはO(N3) に比例し、更に大きい場合もある(制限ハートリー=フォック計算はO(N2.7)にスケールするとされてきた)。ここで、Nは基底関数の数を表し、 各原子は最低でも電子数個の基底関数を必要とする。 上述の計算量の限界を克服するため、関心のある小規模な部分系 (酵素の活性部位など) のみを量子力学的手法 (QM)により取り扱い、周囲を古典的に取り扱う。.

新しい!!: 分子動力学法とQM/MM · 続きを見る »

X線回折

X線回折(エックスせんかいせつ、、XRD)は、X線が結晶格子で回折を示す現象である。 1912年にドイツのマックス・フォン・ラウエがこの現象を発見し、X線の正体が波長の短い電磁波であることを明らかにした。 逆にこの現象を利用して物質の結晶構造を調べることが可能である。このようにX線の回折の結果を解析して結晶内部で原子がどのように配列しているかを決定する手法をX線結晶構造解析あるいはX線回折法という。しばしばこれをX線回折と略して呼ぶ。他に同じように回折現象を利用する結晶構造解析の手法として、電子回折法や中性子回折法がある。.

新しい!!: 分子動力学法とX線回折 · 続きを見る »

材料工学

材料工学(ざいりょうこうがく、英語:materials science and engineering)または材料科学(ざいりょうかがく)は、工学の一分野であり、物理学、化学等の知識を融合して新しい材料(素材)やデバイスの設計と開発、そして評価をおこなう学問である。 プロセス技術(結晶の成長、薄膜化、焼結、鋳造、圧延、溶接、イオン注入、ガラス形成など)、分析評価技術(電子顕微鏡、X線回折、熱量計測など)および産業上の材料生産での費用対利潤の評価などを扱う。.

新しい!!: 分子動力学法と材料工学 · 続きを見る »

条件数

条件数(じょうけんすう、condition number)は、問題のコンピュータでの数値解析しやすさの尺度であり、その問題がどれだけ数値解析に適しているかを表す。条件数が小さい問題は「良条件 (well-conditioned)」であり、条件数が大きい問題は「悪条件 (ill-conditioned)」である。.

新しい!!: 分子動力学法と条件数 · 続きを見る »

核磁気共鳴

核磁気共鳴(かくじききょうめい、nuclear magnetic resonance、NMR) は外部静磁場に置かれた原子核が固有の周波数の電磁波と相互作用する現象である。.

新しい!!: 分子動力学法と核磁気共鳴 · 続きを見る »

構造生物学

構造生物学(こうぞうせいぶつがく、)とは、生物を形作る巨大な生体高分子、特にタンパク質や核酸の立体構造を研究する生物学の一分野。結晶学、NMRなどの技術を用いる。タンパク質の立体構造の理論的推定についてはタンパク質構造予測を参照。.

新しい!!: 分子動力学法と構造生物学 · 続きを見る »

水モデル

水モデルはその幾何構造と原子電荷やレナード=ジョーンズパラメータといったその他のパラメータによって定義される。 計算化学において、古典的水モデル(みずモデル)は、水クラスターや液体の水、露な溶媒を用いた水溶液のシミュレーションのために用いられる。水モデルは量子力学や分子力学、実験結果、これらの組み合わせによって決定される。分子の特定の性質を模倣するため、多くの種類のモデルが開発されている。一般的に、これらは (i) 「サイト」と呼ばれる相互作用点の数、(ii) モデルが剛直なのか柔軟なのか、(iii) モデルが分極効果を含んでいるか、という3つの点によって分類することができる。 露な(明示的な)水モデルの代わりとしては非明示的溶媒和モデル(連続体モデルとも呼ばれる)がある。非明示的溶媒和モデルの例としては、COSMO溶媒和モデルや分極連続体モデル(PCM)、ハイブリッド溶媒和モデルがある。.

新しい!!: 分子動力学法と水モデル · 続きを見る »

液晶

液晶(えきしょう)は、固体と液体の両方の性質を示す状態の一つにある物質である。また、その状態を示す場合もある。 これを利用したディスプレイ・テレビ受像機については、液晶ディスプレイ・薄型テレビを参照のこと。.

新しい!!: 分子動力学法と液晶 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 分子動力学法と温度 · 続きを見る »

断熱過程

断熱過程(だんねつかてい、)とは、外部との熱のやりとり(熱接触)がない状況で、系をある状態から別の状態へと変化させる熱力学的な過程である。.

新しい!!: 分子動力学法と断熱過程 · 続きを見る »

数値積分

数値積分(すうちせきぶん)とは、狭義には与えられる関数の定積分の値を、解析的にではなく数値的に求めることであり、広義には与えられる導関数から原関数を求めること、また微分方程式を数値的に解くことを含む。数値解析の一つである。 以下では、狭義の数値積分(一変数の関数の定積分の値を求める方法)について述べる。.

新しい!!: 分子動力学法と数値積分 · 続きを見る »

数値解析

バビロニアの粘土板 YBC 7289 (紀元前1800-1600年頃) 2の平方根の近似値は60進法で4桁、10進法では約6桁に相当する。1 + 24/60 + 51/602 + 10/603.

新しい!!: 分子動力学法と数値解析 · 続きを見る »

1957年

記載なし。

新しい!!: 分子動力学法と1957年 · 続きを見る »

1964年

記載なし。

新しい!!: 分子動力学法と1964年 · 続きを見る »

1971年

記載なし。

新しい!!: 分子動力学法と1971年 · 続きを見る »

1977年

記載なし。

新しい!!: 分子動力学法と1977年 · 続きを見る »

1980年

この項目では、国際的な視点に基づいた1980年について記載する。.

新しい!!: 分子動力学法と1980年 · 続きを見る »

1983年

この項目では、国際的な視点に基づいた1983年について記載する。.

新しい!!: 分子動力学法と1983年 · 続きを見る »

1984年

この項目では、国際的な視点に基づいた1984年について記載する。.

新しい!!: 分子動力学法と1984年 · 続きを見る »

1985年

この項目では、国際的な視点に基づいた1985年について記載する。.

新しい!!: 分子動力学法と1985年 · 続きを見る »

1991年

この項目では、国際的な視点に基づいた1991年について記載する。.

新しい!!: 分子動力学法と1991年 · 続きを見る »

2体ポテンシャル

2体ポテンシャル(にたいポテンシャル)とは、2つの量の位置などの関係で決まるポテンシャルのこと。クーロンポテンシャルや万有引力ポテンシャルなどがある。 多粒子系のポテンシャルを2体ポテンシャルの重ね合わせで近似できるが、量子力学を適用しなければならないミクロの系の多粒子系のポテンシャルは、3体ポテンシャルなどの多体ポテンシャルを用いた方がよりよい近似を与える。.

新しい!!: 分子動力学法と2体ポテンシャル · 続きを見る »

ここにリダイレクトされます:

分子動力学

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »