ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

分光器

索引 分光器

分光器(ぶんこうき、Spectrometer)は、一般には光の電磁波スペクトルを測定する光学機器の総称である。分光器によって得られるスペクトルは、横軸に電磁波の波長又は光のエネルギーに比例した物理量(例えば波数、周波数、電子ボルト)を用い、縦軸には光の強度や強度から導かれる物理量(偏光度)が用いられる。例えば、分光学において、原子や分子の線スペクトルを測定し、その波長と強度を測定するのに用いられる。 分光器という用語は遠赤外からガンマ線・エックス線といった広範囲に渡って、このような目的で用いられる光学機器一般に用いられる。それぞれのエネルギー領域(X線・紫外・可視・近赤外・赤外・遠赤外)においては異なった技術が用いられるので、一つ一つの分光器には、用いることができる特定の領域がある。 光の領域より長波長(マイクロ波、などの電波領域)においてはスペクトラムアナライザが同様の働きをする。.

38 関係: 原子原子吸光可視光線屈折干渉法ミラーマイクロ波モノクロメーターレンズロベルト・ブンゼンプリズム分子分光器分光法分光測色法分析化学周波数グスタフ・キルヒホフスペクトラムアナライザスペクトルスリット写真フィルム光電子分光回折格子紫外可視近赤外分光光度計紫外可視近赤外分光法紫外線結晶誘導結合プラズマ赤外分光法赤外線蛍光光度計電子ボルト電磁波X線波長波数

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 分光器と原子 · 続きを見る »

原子吸光

原子吸光(げんしきゅうこう)とは、高温に加熱して原子化した物質に光を照射したときに、構成元素に固有の幅の狭い吸収スペクトルを示す現象、あるいはそれを利用して試料に含まれる元素の定性と定量を行う分析方法のことを言う。.

新しい!!: 分光器と原子吸光 · 続きを見る »

可視光線

可視光線(かしこうせん 英:Visible light)とは、電磁波のうち、ヒトの目で見える波長のもの。いわゆる光のこと。JIS Z8120の定義によれば、可視光線に相当する電磁波の波長は下界はおおよそ360-400 nm、上界はおおよそ760-830 nmである。可視光線より波長が短くなっても長くなっても、ヒトの目には見ることができなくなる。可視光線より波長の短いものを紫外線、長いものを赤外線と呼ぶ。可視光線に対し、赤外線と紫外線を指して、不可視光線(ふかしこうせん)と呼ぶ場合もある。 可視光線は、太陽やそのほか様々な照明から発せられる。通常は、様々な波長の可視光線が混ざった状態であり、この場合、光は白に近い色に見える。プリズムなどを用いて、可視光線をその波長によって分離してみると、それぞれの波長の可視光線が、ヒトの目には異なった色を持った光として認識されることがわかる。各波長の可視光線の色は、日本語では波長の短い側から順に、紫、青紫、青、青緑、緑、黄緑、黄、黄赤(橙)、赤で、俗に七色といわれるが、これは連続的な移り変わりであり、文化によって分類の仕方は異なる(虹の色数を参照のこと)。波長ごとに色が順に移り変わること、あるいはその色の並ぶ様を、スペクトルと呼ぶ。 もちろん、可視光線という区分は、あくまでヒトの視覚を主体とした分類である。紫外線領域の視覚を持つ動物は多数ある(一部の昆虫類や鳥類など)。太陽光をスペクトル分解するとその多くは可視光線であるが、これは偶然ではない。太陽光の多くを占める波長域がこの領域だったからこそ、人間の目がこの領域の光を捉えるように進化したと解釈できる。 可視光線は、通常はヒトの体に害はないが、例えば核爆発などの強い可視光線が目に入ると網膜の火傷の危険性がある。.

新しい!!: 分光器と可視光線 · 続きを見る »

屈折

光が屈折しているため、水中の棒が曲がって見える。 屈折(くっせつ、)とは、波(波動)が異なる媒質を通ることによって進行方向を変えることである。異なる媒質を通るときに、波の周波数が変わらずに進む速度が変わるため進行方向が変わる(エネルギー保存の法則や運動量保存の法則による)。観測されやすい屈折は、波が0度以外の角度で媒質を変えるものである。 光の屈折がもっとも身近な例であるが、例えば音波や水の波動も屈折する。波が進行方向を変える度合いとしてはホイヘンスの原理を使ったスネルの法則が成り立つ。部分的に反射する振る舞いはフレネルの式で表される。なぜ光が屈折するかについては、量子力学的にファインマンの経路積分によって説明される。.

新しい!!: 分光器と屈折 · 続きを見る »

干渉法

2波干渉 単色光源による波面を距離を変えてぶつけてやると、こうなる。 干渉法(かんしょうほう)は複数の波を重ね合わせるとき、それぞれの波の位相が一致した部分では波が強め合い、位相が逆転している部分では弱めあうことを利用して、波長(周波数)や位相差を測定する技術のこと。この原理を利用した機器を主に干渉計とよぶ。 ガンマ線から可視光線、電波・音波領域に及ぶ電磁波工学の研究・製品の製造管理(および較正)・動作原理においては基礎的技術であり、この原理を利用する機器・分野は極めて多岐に渡る。.

新しい!!: 分光器と干渉法 · 続きを見る »

ミラー

ミラー.

新しい!!: 分光器とミラー · 続きを見る »

マイクロ波

マイクロ波(マイクロは、Microwave)は、電波の周波数による分類の一つである。「マイクロ」は、電波の中で最も短い波長域であることを意味する。.

新しい!!: 分光器とマイクロ波 · 続きを見る »

モノクロメーター

モノクロメーターまたは単色計(たんしょくけい)とは、回折格子やプリズムなどの分散素子で分散させた光の中から、ある特定の波長の光のみをスリットで取り出す装置のことである。 逆に、複数の波長を取り出す装置をと呼ぶ。.

新しい!!: 分光器とモノクロメーター · 続きを見る »

レンズ

レンズ レンズの断面形状の種類 レンズ()とは、.

新しい!!: 分光器とレンズ · 続きを見る »

ロベルト・ブンゼン

ベルト・ヴィルヘルム・ブンゼン(Robert Wilhelm Bunsen、1811年3月31日(30日とも) – 1899年8月16日)は、ドイツの化学者である。自らが改良したバーナー(ブンゼンバーナーと呼ばれる)を利用して、グスタフ・キルヒホフと共に、分光学的方法で1860年にセシウム、1861年にルビジウムを発見した。.

新しい!!: 分光器とロベルト・ブンゼン · 続きを見る »

プリズム

プリズム()とは、光を分散・屈折・全反射・複屈折させるための、周囲の空間とは屈折率の異なるガラス・水晶などの透明な媒質でできた多面体。 光学部品の1つであり、もとは「角柱」という意味。日本語では三稜鏡(さんりょうきょう)とも呼ばれた。.

新しい!!: 分光器とプリズム · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: 分光器と分子 · 続きを見る »

分光器

分光器(ぶんこうき、Spectrometer)は、一般には光の電磁波スペクトルを測定する光学機器の総称である。分光器によって得られるスペクトルは、横軸に電磁波の波長又は光のエネルギーに比例した物理量(例えば波数、周波数、電子ボルト)を用い、縦軸には光の強度や強度から導かれる物理量(偏光度)が用いられる。例えば、分光学において、原子や分子の線スペクトルを測定し、その波長と強度を測定するのに用いられる。 分光器という用語は遠赤外からガンマ線・エックス線といった広範囲に渡って、このような目的で用いられる光学機器一般に用いられる。それぞれのエネルギー領域(X線・紫外・可視・近赤外・赤外・遠赤外)においては異なった技術が用いられるので、一つ一つの分光器には、用いることができる特定の領域がある。 光の領域より長波長(マイクロ波、などの電波領域)においてはスペクトラムアナライザが同様の働きをする。.

新しい!!: 分光器と分光器 · 続きを見る »

分光法

プリズムによる光線の波長分割 分光法(ぶんこうほう、spectroscopy)とは、物理的観測量の強度を周波数、エネルギー、時間などの関数として示すことで、対象物の定性・定量あるいは物性を調べる科学的手法である。 spectroscopy の語は、元々は光をプリズムあるいは回折格子でその波長に応じて展開したものをスペクトル (spectrum) と呼んだことに由来する。18世紀から19世紀の物理学において、スペクトルを研究する分野として分光学が確立し、その原理に基づく測定法も分光法 (spectroscopy) と呼ばれた。 もともとは、可視光の放出あるいは吸収を研究する分野であったが、光(可視光)が電磁波の一種であることが判明した19世紀以降は、ラジオ波からガンマ線(γ線)まで、広く電磁波の放出あるいは吸収を測定する方法を分光法と呼ぶようになった。また、光の発生または吸収スペクトルは、物質固有のパターンと物質量に比例したピーク強度を示すために物質の定性あるいは定量に、分析化学から天文学まで広く応用され利用されている。 また光子の吸収または放出は量子力学に基づいて発現し、スペクトルは離散的なエネルギー状態(エネルギー準位)と対応することが広く知られるようになった。そうすると、本来の意味の「スペクトル」とは全く異なる、「質量スペクトル」や「音響スペクトル」など離散的なエネルギー状態を表現した測定チャートもスペクトルとよばれるようになった。また「質量スペクトル」などは物質の定性に使われることから、今日では広義の分光法は「スペクトル」を使用して物性を測定あるいは物質を同定・定量する技法一般の総称となっている。.

新しい!!: 分光器と分光法 · 続きを見る »

分光測色法

分光測色計 分光測色法(英: Spectrophotometry)とは、物理学における電磁スペクトルの定量的研究手法である。分光法よりも適用範囲が狭く、可視光線、近紫外線、近赤外線を扱う。また、時間分解分光技法も含まれない。 分光測色法では、分光測色計または分光測色器(spectrophotometer)を使う。分光測色計は光度計の一種で、色ごと(より正確に言えば光の波長ごと)の強さを測定する。分光測色計には様々な種類のものが存在する。分類上重要な差異としては、扱える波長の範囲、使用している測定技法の違い、光をスペクトルに分解する技法の違い、測定対象の種類などがある。また、スペクトルの帯域幅と線形な範囲も重要な特性である。 分光測色計の典型的な利用として吸光の測定(吸光光度計)があるが、散乱反射率や鏡面反射率も測定できるよう設計されている。 分光測色計の利用は物理学に限定されない。化学、生物化学、分子生物学などの分野でもよく使われている。.

新しい!!: 分光器と分光測色法 · 続きを見る »

分析化学

分析化学(ぶんせきかがく、analytical chemistry)とは、試料中の化学成分の種類や存在量を解析したり、解析のための目的物質の分離方法を研究したりする化学の分野である。得られた知見は社会的に医療・食品・環境など、広い分野で利用されている。 試料中の成分判定を主眼とする分析を定性分析といい、その行為を同定すると言い表す。また、試料中の特定成分の量あるいは比率の決定を主眼とする分析を定量分析といい、その行為を定量すると言い表す。ただし、近年の分析装置においては、どちらの特性も兼ね備えたものが多い。 分析手法により、分離分析(クロマトグラフィー、電気泳動など)、分光分析(UV、IRなど)、電気分析(ボルタンメトリーなど)などの区分がある。 あるいは検出手段の違いにより、滴定分析、重量分析、機器分析と区分する場合もある。ここでいう機器分析とは、分光器など人間の五感では観測できない物理的測定が必要な分析グループに由来する呼称である。現在では重量分析も自動化されて、専ら機器をもちいて分析されているが機器分析とはしない。 分析化学は大学の化学教育において基礎科目の一つであり、環境化学への展開や高度な分析技術の開発などが研究のテーマとなっている。.

新しい!!: 分光器と分析化学 · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

新しい!!: 分光器と周波数 · 続きを見る »

グスタフ・キルヒホフ

分光器を使っているキルヒホフ グスタフ・ロベルト・キルヒホフ(Gustav Robert Kirchhoff, 1824年3月12日 - 1887年10月17日)は、プロイセン(現在のロシアのカリーニングラード州)生まれの物理学者。電気回路におけるキルヒホッフの法則、放射エネルギーについてのキルヒホッフの法則、反応熱についてのキルヒホッフの法則は、どれも彼によってまとめられた法則である。 グスタフ・キルヒホフは1824年、ケーニヒスベルク(現在のカリーニングラード)で生まれた。ケーニヒスベルクにあるケーニヒスベルク大学で学び、1850年にブレスラウ大学員外教授に就任した。 学生時代にオームの法則を拡張した電気法則を提唱。1849年に電気回路におけるキルヒホフの法則として纏め上げた。この法則は電気工学において広く応用されている。 1859年、黒体放射におけるキルヒホフの放射法則を発見した。 ロベルト・ブンゼンとともに、分光学研究に取り組み、セシウムとルビジウムを発見した。フラウンホーファーが発見した太陽光スペクトルの暗線(フラウンホーファー線)がナトリウムのスペクトルと同じ位置に見られることを明らかにし、分光学的方法により太陽の構成元素を同定できることを示した。 このほか音響学、弾性論に関しても研究を行った。.

新しい!!: 分光器とグスタフ・キルヒホフ · 続きを見る »

スペクトラムアナライザ

ペクトラムアナライザ(Spectrum analyzer)は、横軸を周波数、縦軸を電力または電圧とする二次元のグラフを画面に表示する電気計測器である。略してスペアナと呼ばれることが多い。表示は、画面を左から右に周期的に掃引される光点によってなされる。高周波用と低周波用があり、原理・構造が異なるので分けて説明する。.

新しい!!: 分光器とスペクトラムアナライザ · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

新しい!!: 分光器とスペクトル · 続きを見る »

スリット

ーバーコートのセンターベント スリット(Slit)とは、切れ目、隙間のこと。 曲げ等の加工の為や光を取り入れる為、換気や放熱(冷却)のための機械工作や、建築においては構造力学で応力を他の部材に伝達しない手段としてスリットを入れる事がある(但し、建築では構造体に使われるものであるのと同様に耐火性能を要求される)。 服飾では、スカートなどの裾に動きやすくするなどの目的で入れる切れ目を指す。チャイナドレスの大きなスリットは、ウマに乗りやすくするために設けられたものだが、今では単なる装飾になっている。.

新しい!!: 分光器とスリット · 続きを見る »

写真フィルム

35mmスチールカメラ用のパトローネ入りフィルムの例 写真フィルム(しゃしんフィルム)とは写真(映画も含む)において、カメラから得られた光の情報を記録する感光材料であり、現像されることにより記録媒体となるフィルムのこと。透明な薄い膜状のベース(支持体)に感光剤(主として銀化合物.

新しい!!: 分光器と写真フィルム · 続きを見る »

光電子分光

光電子分光(こうでんしぶんこう、photoemission spectroscopy)とは、固体に一定エネルギーの電磁波をあて、光電効果によって外に飛び出してきた電子(光電子とよばれる)のエネルギーを測定し、固体の電子状態を調べる方法である。 測定対象となる物質は主に金属や半導体であり、絶縁体はチャージアップの関係から測定には不向きである. カイ・シーグバーン (Kai M. Siegbahn) は高分解能光電子分光法の開発で1981年のノーベル物理学賞を受賞している。.

新しい!!: 分光器と光電子分光 · 続きを見る »

回折格子

実験用の超大型回折格子 回折格子(かいせつこうし)とは、格子状のパターンによる回折を利用して干渉縞を作るために使用される光学素子の総称。グレーティング()とも呼ばれる。格子パターンは直線状の凹凸がマイクロメートルサイズの周期で平行に並んで構成されていることが多い。ただしその周期、材質やパターン厚(凹凸の差厚)などは用途や使用する波長域によって適宜異なる。主に物理・化学分野で分光素子として用いられるものの用途は一概には言えない。 回折格子による干渉縞が見られる身近な例としては、CDが挙げられる。(後述)(ただしCDは、構造的に回折格子になっているものの、回折を利用しているわけではない) チャンドラのスペクトロメーターに使用された回折格子.

新しい!!: 分光器と回折格子 · 続きを見る »

紫外可視近赤外分光光度計

紫外可視近赤外分光光度計(しがいかしきんせきがいぶんこうこうどけい)とは、紫外可視-近赤外領域波長の吸光度を測定する装置で、紫外可視近赤外分光法に用いられる。 この項目では紫外可視近赤外分光光度計の中でも現在、主に使用されているダブルビーム方式の自記分光光度計について述べる。また、紫外可視吸収における電子状態についても合わせて記載することとする。.

新しい!!: 分光器と紫外可視近赤外分光光度計 · 続きを見る »

紫外可視近赤外分光法

紫外可視近赤外分光法(しがいかしきんせきがいぶんこうほう、UV-Vis-NIR)は、紫外 (UV, UltraViolet)、可視 (Vis, Visible)、および近赤外 (NIR, Near InfraRed) 領域の光吸収を測定する分光法である。通常、200–1,500 nm 程度の波長範囲について測定する。 一般に、この範囲の吸光は、分子内の電子遷移に由来する。遷移過程としては、π-π* 遷移、n-π* 遷移、d-d 遷移、金属-配位子間電荷移動 (MLCT)、原子価間電荷移動移動 (IVCT) などがあるが、このような遷移過程を持つ分子は比較的少ない(一方、赤外吸収は分子振動・回転に由来するため、ほとんど全ての分子が示す)。 したがって、本法の対象となる試料は限られたものとなる。しかしながら、測定が容易であること、結果が肉眼での観察と一致しわかりやすいこと、分子によっては極めて特徴的なスペクトルを示すこと(ポルフィリンなど)、スペクトルが物質の状態によって敏感に変化することなどから、特に錯体化学や分析化学で頻繁に用いられる測定法である。.

新しい!!: 分光器と紫外可視近赤外分光法 · 続きを見る »

紫外線

紫外線(しがいせん、ultraviolet)とは、波長が10 - 400 nm、即ち可視光線より短く軟X線より長い不可視光線の電磁波である。.

新しい!!: 分光器と紫外線 · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: 分光器と結晶 · 続きを見る »

誘導結合プラズマ

誘導結合プラズマ(ゆうどうけつごうプラズマ、Inductively Coupled Plasma、略称:ICP)は、気体に高電圧をかけることによってプラズマ化させ、さらに高周波数の変動磁場によってそのプラズマ内部に渦電流によるジュール熱を発生させることによって得られる高温のプラズマである。誘導結合プラズマの温度は10000K程度、電子密度は約1017個/m3である。.

新しい!!: 分光器と誘導結合プラズマ · 続きを見る »

赤外分光法

赤外分光法(せきがいぶんこうほう、、 略称IR)とは、測定対象の物質に赤外線を照射し、透過(あるいは反射)光を分光することでスペクトルを得て、対象物の特性を知る方法のことをいう。対象物の分子構造や状態を知るために使用される。.

新しい!!: 分光器と赤外分光法 · 続きを見る »

赤外線

赤外線(せきがいせん)は、可視光線の赤色より波長が長く(周波数が低い)、電波より波長の短い電磁波のことである。ヒトの目では見ることができない光である。英語では infrared といい、「赤より下にある」「赤より低い」を意味する(infra は「下」を意味する接頭辞)。分光学などの分野ではIRとも略称される。対義語に、「紫より上にある」「紫より高い」を意味する紫外線(英:ultraviolet)がある。.

新しい!!: 分光器と赤外線 · 続きを見る »

蛍光光度計

蛍光光度計(けいこうこうどけい)は、分光光度計の一種で、光(励起光)を照射したときに試料から放出される蛍光を測定する装置である。.

新しい!!: 分光器と蛍光光度計 · 続きを見る »

電子ボルト

物理学において、電子ボルト(エレクトロンボルト、electron volt、記号: eV)とはエネルギーの単位のひとつ。 素電荷(そでんか)(すなわち、電子1個分の電荷の符号を反転した値)をもつ荷電粒子が、 の電位差を抵抗なしに通過すると得るエネルギーが 。.

新しい!!: 分光器と電子ボルト · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: 分光器と電磁波 · 続きを見る »

虹(画像の主虹の上部に薄く副虹が見える) 滝の水飛沫による虹(アイスランド・グトルフォス) 波の水飛沫による虹 虹(にじ)とは、赤から紫までの光のスペクトルが並んだ、円弧状の光である。気象現象の中でも、大気光学現象に含まれる。 太陽の光が、空気中の水滴によって屈折、反射されるときに、水滴がプリズムの役割をするため、光が分解されて、複数色(日本では七色とされる)の帯に見える。雨上がり、水しぶきをあげる滝、太陽を背にしてホースで水まきをした時などによく見ることができる。虹色は多色の一つとも言える。.

新しい!!: 分光器と虹 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

新しい!!: 分光器とX線 · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

新しい!!: 分光器と波長 · 続きを見る »

波数

波数(はすう、wavenumber, wave-number)とは、波の個数のことで、物理化学および分光学の分野では が、波動力学では が記号として用いられる。 国際単位系における単位は毎メートルであるが、電磁波の波数の場合はCGS単位系の毎センチメートルを使う場合があり、カイザーという固有名称もある。.

新しい!!: 分光器と波数 · 続きを見る »

ここにリダイレクトされます:

分光光度計分光装置分光計

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »