ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

交代群と対称群

ショートカット: 違い類似点ジャカード類似性係数参考文献

交代群と対称群の違い

交代群 vs. 対称群

交代群(こうたいぐん、alternating group, Alternierende Gruppe)とは、有限集合の偶置換全体がなす群である。集合 上の交代群は n 次の交代群、もしくは n 文字の交代群 (the alternating group on n letters) と呼ばれ、An もしくは Alt(n), \mathfrak_n という記号で表す。これは n 変数の交代式を不変とするような変数の置換がなす群と思ってもよい。 例として、4つの元からなる集合 の交代群 A4 は以下のようになる。A4. 対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

交代群と対称群間の類似点

交代群と対称群は(ユニオンペディアに)共通で13ものを持っています: 単純群可解群対称群交換子部分群ガロア理論クラインの四元群クレレ誌内部自己同型置換の符号群 (数学)核 (代数学)正規部分群有限集合

単純群

数学において、単純群 (simple group)とは、自明でない正規部分群 (それ自身と自明群 (単位群) 以外の正規部分群) を持たず、またそれ自身も自明群ではない群である。単純群は自明でない正規部分群を持たないので当然直既約群であるが、直既約群は必ずしも単純群ではない (下の例参照)。 群に主組成列が存在すれば、有限個の直既約群の直積に一意的に分解される (クルル・レマク・シュミットの定理)。しかし、上記の理由により、必ずしも有限個の単純群の直積に分解されるとは限らない。もし、群が有限個の単純群の直積に分解可能であれば、その群は完全可約群または半単純群であるという。また、その場合に限って、主組成列の長さと直積の成分である単純群の個数は一致する浅野啓三・永尾汎 『群論』、岩波書店〈岩波全書〉、1965年、pp102-104。。.

交代群と単純群 · 単純群と対称群 · 続きを見る »

可解群

数学、特に群論の分野において、可解群(かかいぐん、solvable group, soluble group、Auflösbare Gruppe)は、アーベル群から群の拡大を用いて構成できる群のことである。つまり、可解群は導来列が自明な群で終わるような群のことである。 歴史的には、「可解」という語はガロア理論による5次以上の一般の方程式は代数的に解けないこと(アーベル–ルフィニの定理)の証明から来ている。特に、標数0の体上の代数方程式が根号を用いて解けるのは対応するガロア群が可解群であるとき、およびそのときに限る。.

交代群と可解群 · 可解群と対称群 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

交代群と対称群 · 対称群と対称群 · 続きを見る »

交換子部分群

数学、特に抽象代数学における群の交換子部分群(こうかんしぶぶんぐん、commutator subgroup)あるいは導来部分群(どうらいぶぶんぐん、derived subgroup)は、その群の交換子全体で生成される部分群である。 交換子部分群は、それによる商がアーベル群となるような正規部分群のうちで最小のものであるという点で重要である。すなわち、 がアーベル群となる必要十分条件は正規部分群 が交換子部分群を含むことである。ゆえにある意味で交換子部分群は、群がアーベル群からどれくらい離れているかを測るものということができる。つまり、交換子部分群が大きいほど、その群はアーベル群から遠くなる。.

交代群と交換子部分群 · 交換子部分群と対称群 · 続きを見る »

ガロア理論

ア理論(ガロアりろん、Galois theory)は、代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する理論。1830年代のエヴァリスト・ガロアによる代数方程式の冪根による可解性などの研究が由来。ガロアは当時、まだ確立されていなかった群や体の考えを方程式の研究に用いていた。 ガロア理論によれば、“ガロア拡大”と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。.

ガロア理論と交代群 · ガロア理論と対称群 · 続きを見る »

クラインの四元群

ラインの四元群とは、巡回群でない位数が最小の群である。また、位数2の巡回群の直積と同型である。 クラインの四群元の単位元以外の元の位数は、2である。 クラインの四元群の演算表は: また、交代群 A4 の正規部分群 と同型。.

クラインの四元群と交代群 · クラインの四元群と対称群 · 続きを見る »

クレレ誌

レレ誌もしくは、単にクレレとは数学誌Journal für die reine und angewandte Mathematik (純粋・応用数学雑誌の意)の通称。.

クレレ誌と交代群 · クレレ誌と対称群 · 続きを見る »

内部自己同型

抽象代数学において、内部自己同型写像 (inner automorphism) は、ある操作をして、次に別の操作をして、次に最初の操作の逆をするような写像である。記号では、f^ \circ g \circ f (X) のように書ける。最初の行動と後に続くその逆の行動は、全体として得る結果を変えることもあれば(「傘をさして、雨の中を歩いて、傘をとじる」というのは単に「雨の中を歩く」のとは異なる結果になる)、変えないこともある(「左手の手袋を外し、右手の手袋を外し、左手の手袋をつける」のは「右手の手袋のみを外す」のと同じ結果になる)。 より正確には、群 の内部自己同型写像 は、 の任意の元 に対し によって定義される写像である。ここで a は G の与えられた固定された元であり、群の元の作用は右に起こると考える(なのでこれを読むとすれば「a かける x かける a−1」ということになる)。 元 を一つ固定して考えるとき、元 を の による共軛 (conjugate) (あるいは は によって と共軛である)と言い、 から を得る操作 を の による共役変換 (conjugation) または相似変換 (similarity transformation) と呼ぶ(共役類も参照)。また適当な によって の形に書けるような元を総称して の共軛元 (conjugate element) と呼ぶ。 1 つの元による共役が別の 1 つの元を変えない場合(上の「手袋」の場合)と共役によって新しい元が得られる場合(「傘」の場合)を区別することはしばしば興味の対象となる。 事実、 と言うことと と言うことは同値である。したがって、恒等写像でない内部自己同型の存在と個数は、群における交換法則の成り立たなさを測るようなものである。.

交代群と内部自己同型 · 内部自己同型と対称群 · 続きを見る »

置換の符号

数学において、少なくとも二元を含む有限集合 の置換( から への全単射)は大きく二つのクラス(偶置換と奇置換)に分けられる。 の任意の全順序を固定して、 の置換 の偶奇性(パリティ; 対性)は の転倒数、すなわち の元の対 で なるものの数、の偶奇性によって定義することができる。 置換 の符号 (sign) あるいは符号数 (signature) は、 が偶置換ならば, 奇置換ならば を割り当てる。置換の符号函数 は対称群 の交代指標と呼ばれる群指標を定義する。置換の符号に対する別の記法として、より一般のレヴィ–チヴィタ記号によって与えられる がある。これは から への全単射とは限らない任意の写像に対して定義され、全単射でない写像に対しては を割り当てる。 置換の符号は を の転倒数とすれば と明示的に書くことができる。 あるいは、置換の符号を置換の互換の積への分解によって定義することもできる。すなわち、置換 の互換の積への分解に現れる互換の数を とするとき、 とおくのである。置換のこのような互換の積への分解は一意ではないけれども、分解に現れる互換の総数の偶奇は置換ごとに一定しているので、この方法で置換の符号は矛盾なく定まるJacobson (2009), p. 50.

交代群と置換の符号 · 対称群と置換の符号 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

交代群と群 (数学) · 対称群と群 (数学) · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

交代群と核 (代数学) · 対称群と核 (代数学) · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

交代群と正規部分群 · 対称群と正規部分群 · 続きを見る »

有限集合

数学において、集合が有限(ゆうげん、finite)であるとは、自然数 n を用いて という形にあらわされる集合との間に全単射が存在することをいう(ただしここでは、n.

交代群と有限集合 · 対称群と有限集合 · 続きを見る »

上記のリストは以下の質問に答えます

交代群と対称群の間の比較

対称群が76を有している交代群は、28の関係を有しています。 彼らは一般的な13で持っているように、ジャカード指数は12.50%です = 13 / (28 + 76)。

参考文献

この記事では、交代群と対称群との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »