ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

二ホウ化マグネシウムと高温超伝導

ショートカット: 違い類似点ジャカード類似性係数参考文献

二ホウ化マグネシウムと高温超伝導の違い

二ホウ化マグネシウム vs. 高温超伝導

二ホウ化マグネシウム(にホウかマグネシウム、magnesium diboride、MgB2)はホウ素とマグネシウムからなる無機化合物で、六方晶の層状物質。結晶構造は AlB2 型構造 (P6/mmm)。これは、ホウ素がグラファイトのように亀の甲(ハニカム)状となって層状に積層した間を、マグネシウムがインターカレート(intercalate, 挿入)したような構造である。金属間化合物であり、金属の性質を示す。ホウ素層内は主に共有結合であり、ホウ素層、マグネシウム層間はイオン結合的な力で結合している(この点が、グラファイト層間のファンデルワールス結合と異なる)。. 温超伝導(こうおんちょうでんどう、high-temperature superconductivity)とは、高い転移温度 で起こる超伝導である。.

二ホウ化マグネシウムと高温超伝導間の類似点

二ホウ化マグネシウムと高温超伝導は(ユニオンペディアに)共通で10ものを持っています: ケルビン共有結合秋光純銅酸化物青山学院大学超伝導超電導リニア転移温度液体ヘリウム2001年

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

ケルビンと二ホウ化マグネシウム · ケルビンと高温超伝導 · 続きを見る »

共有結合

H2(右)を形成している共有結合。2つの水素原子が2つの電子を共有している。 共有結合(きょうゆうけつごう、covalent bond)は、原子間での電子対の共有をともなう化学結合である。結合は非常に強い。ほとんどの分子は共有結合によって形成される。また、共有結合によって形成される結晶が共有結合結晶である。配位結合も共有結合の一種である。 この結合は非金属元素間で生じる場合が多いが、金属錯体中の配位結合の場合など例外もある。 共有結合はσ結合性、π結合性、金属-金属結合性、アゴスティック相互作用、曲がった結合、三中心二電子結合を含む多くの種類の相互作用を含む。英語のcovalent bondという用語は1939年に遡る。接頭辞のco- は「共同」「共通」などを意味する。ゆえに、「co-valent bond」は本質的に、原子価結合法において議論されているような「原子価」(valence)を原子が共有していることを意味する。 分子中で、水素原子は共有結合を介して2つの電子を共有している。共有結合性は似た電気陰性度の原子間で最大となる。ゆえに、共有結合は必ずしも同種元素の原子の間だけに生じるわけではなく、電気陰性度が同程度であればよい。3つ以上の原子にわたる電子の共有を伴う共有結合は非局在化している、と言われる。.

二ホウ化マグネシウムと共有結合 · 共有結合と高温超伝導 · 続きを見る »

秋光純

秋光純(あきみつ じゅん、1939年 - )は、日本の物理学者。学位は理学博士(東京大学・1970年)。青山学院大学理工学部名誉教授。岡山大学特任教授。2001年紫綬褒章、2014年瑞宝中綬章を受章日本経済新聞2014年4月29日朝刊「瑞宝中綬章 青山学院大学教授・秋光純氏(74) 」。.

二ホウ化マグネシウムと秋光純 · 秋光純と高温超伝導 · 続きを見る »

銅酸化物

銅酸化物(どうさんかぶつ、copper oxide)は銅の酸化物のこと。高温超伝導物質の中に銅酸化物が多い。 銅酸化物の例として以下のものが挙げられる。.

二ホウ化マグネシウムと銅酸化物 · 銅酸化物と高温超伝導 · 続きを見る »

青山学院大学

記載なし。

二ホウ化マグネシウムと青山学院大学 · 青山学院大学と高温超伝導 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

二ホウ化マグネシウムと超伝導 · 超伝導と高温超伝導 · 続きを見る »

超電導リニア

超電導リニア(ちょうでんどうリニア、英訳:SCMaglev, Superconducting Maglev, Superconducting Magnetic Levitation Railway)は、鉄道総合技術研究所(鉄道総研)および東海旅客鉄道(JR東海)により開発が進められている磁気浮上式リニアモーターカーである。超電導電磁石(超伝導電磁石)を利用するため、開発を推進するJR東海では超電導リニアと呼んでいるが、国土交通省では「超電導磁気浮上方式鉄道」という呼び方もしており、また「JRマグレブ」という呼び方もある。マグレブ (Maglev) とは英語の“magnetic levitation”(磁気浮上)を省略した呼称である。 新幹線を始めとする、従来の軌道接地走行の技術的問題点を回避できる浮上走行を行う。磁気浮上方式鉄道としては他に、ドイツのトランスラピッドや日本のHSSTなどがあるが、この2者は常電導電磁石による浮上であり、超電導電磁石によるリニアモーターでの走行は、世界でもこの超電導リニアのみである。超電導磁石による浮上・案内という基本原理は、米国のPowell、Danby両博士の米国機械学会誌への発表によるものであるが、その後、基礎技術から日本で独自に研究・開発が行われた点も特筆すべき事柄である。技術的には既に実用化段階にあり、有人の試験走行で2003年(平成15年)12月にMLX01の3両編成が鉄道における世界最高速度となる581km/hを記録、2015年(平成27年)4月16日にはL0系7両編成が590km/h、同月21日には同じくL0系7両編成が603km/hを記録し、MLX01の世界記録を更新した。 2027年を目標に中央新幹線として、品川駅 - 名古屋駅間の営業運転を開始する予定である。.

二ホウ化マグネシウムと超電導リニア · 超電導リニアと高温超伝導 · 続きを見る »

転移温度

転移温度 (てんいおんど、Transition temperature) は相転移を起こす温度のこと。転移温度をTcと書くこともあるが、異なる場合もある(例:反強磁性におけるネール温度をTNと書いたりする)。 超伝導において、常伝導から超伝導、超伝導から常伝導に相転移する温度のことを超伝導転移温度、あるいは転移温度という。または、臨界温度ともいう。記号はどちらもTc(critical temperature)を使う。 このTcは、BCS理論の中でも最も有名な次の理論式、デバイ温度ΘD、状態密度N(0)、相互作用強さVで表される。 Tc.

二ホウ化マグネシウムと転移温度 · 転移温度と高温超伝導 · 続きを見る »

液体ヘリウム

容器の中の液体ヘリウム ヘリウムは、-269 ℃(約4 K)という極低温で液体として存在する。ヘリウムの安定な同位体には大多数を占めるヘリウム4と非常に希少なヘリウム3の2種類しかないが、沸点や臨界点は、同位体によって異なる。1気圧、沸点でのヘリウム4の密度は、約125 g/lである。 物性研究においても特に超伝導体や高磁場を発生する電磁石の冷却のために寒剤として多用される。このため規模の大きい大学や研究機関では、利便性の向上やコスト低減のために利用後の気化したヘリウムの回収配管とともに液化装置を所有していることが多い。.

二ホウ化マグネシウムと液体ヘリウム · 液体ヘリウムと高温超伝導 · 続きを見る »

2001年

また、21世紀および3千年紀における最初の年でもある。この項目では、国際的な視点に基づいた2001年について記載する。.

2001年と二ホウ化マグネシウム · 2001年と高温超伝導 · 続きを見る »

上記のリストは以下の質問に答えます

二ホウ化マグネシウムと高温超伝導の間の比較

高温超伝導が122を有している二ホウ化マグネシウムは、24の関係を有しています。 彼らは一般的な10で持っているように、ジャカード指数は6.85%です = 10 / (24 + 122)。

参考文献

この記事では、二ホウ化マグネシウムと高温超伝導との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »