ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

三次元球面と極座標系

ショートカット: 違い類似点ジャカード類似性係数参考文献

三次元球面と極座標系の違い

三次元球面 vs. 極座標系

数学における三次元(超)球面(さんじげんきゅうめん、3-sphere; 3-球面)あるいはグローム (glome) は、通常の球面の高次元版である超球面の特別の場合である。四次元ユークリッド空間内の三次元球面は、固定された一点を「中心」として等距離にある点全体の成す点集合として定義することができる。通常の球面(つまり、二次元球面)が三次元の立体である球体の境界を成すのと同様、三次元球面は四次元の立体である四次元球体の境界となる三次元の幾何学的対象である。三次元球面は、三次元多様体の一つの例を与える。. 極座標系(きょくざひょうけい、polar coordinates system)とは、n 次元ユークリッド空間 R 上で定義され、1 個の動径 r と n − 1 個の偏角 θ, …, θ からなる座標系のことである。点 S(0, 0, x, …,x) を除く直交座標は、局所的に一意的な極座標に座標変換できるが、S においてはヤコビアン が 0 となってしまうから、一意的な極座標表現は不可能である。それは、S に於ける偏角が定義できないことからも明らかである。.

三次元球面と極座標系間の類似点

三次元球面と極座標系は(ユニオンペディアに)共通で3ものを持っています: ユークリッド空間直交座標系複素数

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

ユークリッド空間と三次元球面 · ユークリッド空間と極座標系 · 続きを見る »

直交座標系

数学における直交座標系(ちょっこうざひょうけい、, )とは、互いに直交している座標軸を指定することによって定まる座標系のことである。平面上の直交座標系ではそれぞれの点に対して一意に定まる二つの実数の組によって点の位置が指定される。同様にして空間上の直交座標系では三つの実数の組によって座標が与えられる。 1637年に発表された『方法序説』において平面上の座標の概念を確立したルネ・デカルトの名を採ってデカルト座標系 (Cartesian coordinate system) とも呼ぶ。.

三次元球面と直交座標系 · 極座標系と直交座標系 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

三次元球面と複素数 · 極座標系と複素数 · 続きを見る »

上記のリストは以下の質問に答えます

三次元球面と極座標系の間の比較

極座標系が18を有している三次元球面は、44の関係を有しています。 彼らは一般的な3で持っているように、ジャカード指数は4.84%です = 3 / (44 + 18)。

参考文献

この記事では、三次元球面と極座標系との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »