ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ロジスティック方程式と方程式

ショートカット: 違い類似点ジャカード類似性係数参考文献

ロジスティック方程式と方程式の違い

ロジスティック方程式 vs. 方程式

ティック方程式(ロジスティックほうていしき、英語:logistic equation)は、生物の個体数の変化の様子を表す数理モデルの一種である。ある単一種の生物が一定環境内で増殖するようなときに、その生物の個体数(個体群サイズ)の変動を予測できる。人間の場合でいえば、人口の変動を表すモデルである。 1838年にベルギーの数学者ピエール=フランソワ・フェルフルスト(Pierre-François Verhulst)によって、ロジスティック方程式は最初に発案された。フェルフルストは、1798年に発表されて大きな反響を呼んだトマス・ロバート・マルサスの『人口論』の不自然な点を解消するために、このモデルを考案した。マルサスは『人口論』で、人口は原理的に指数関数的に増加することを指摘した。しかし、実際には環境や資源は限られているため、人口の増加にはいずれブレーキがかかると考えるのが自然である。人口が増えるに連れて人口増加率は低減し、人口はどこかで飽和すると考えられる。ロジスティック方程式はこの点を取り入れて、生物の個体数増殖をモデル化したものである。フェルフルスト以後には、アメリカの生物学者レイモンド・パール(Raymond Pearl)が式を普及させた。 具体的には、ロジスティック方程式は という微分方程式で表される。N は個体数、t は時間、dN/dt が個体数の増加率を意味する。r は内的自然増加率、K は環境収容力と呼ばれる定数である。個体数が増えて環境収容力に近づくほど、個体数増加率が減っていくというモデルになっている。 式の解(個体数と時間の関係)はS字型の曲線を描き、個体数は最終的には環境収容力の値に収束する。この曲線や解の関数はロジスティック曲線やロジスティック関数として知られる。方程式の名称は、ロジスティック式やロジスティックモデル、ロジスティック微分方程式と表記される場合もある。発案者の名からVerhulst方程式、発案者と普及者の名からVerhulst-Pearl方程式とも呼ばれる。 ロジスティック方程式は、個体群生態学あるいは個体群動態論における数理モデルとしては入門的なものとして位置づけられ、より複雑な現象に対応する基礎を与える。数学分野としては、微分方程式論や力学系理論の初等的な話題としても取り上げられる。. 14''x'' + 15.

ロジスティック方程式と方程式間の類似点

ロジスティック方程式と方程式は(ユニオンペディアに)共通で8ものを持っています: 力学系実数差分法不定積分微分方程式カオス理論数理モデル整数

力学系

力学系(りきがくけい、英語:dynamical system)とは、一定の規則に従って時間の経過とともに状態が変化するシステム(系)、あるいはそのシステムを記述するための数学的なモデルのことである。一般には状態の変化に影響を与える数個の要素を変数として取り出し、要素間の相互作用を微分方程式または差分方程式として記述することによってモデル化される。 力学系では、システムの状態を実数の集合によって定義している。各々の状態の違いは、その状態を代表する変数の差のみによって表現される。システムの状態の変化は関数によって与えられ、現在の状態から将来の状態を一意に決定することができる。この関数は、状態の発展規則と呼ばれる。 力学系の例としては、振り子の振動や自然界に存在する生物の個体数の変動、惑星の軌道などが挙げられるが、この世界の現象すべてを力学系と見なすこともできる。システムの振る舞いは、対象とする現象や記述のレベルによって多種多様である。;力学系の具体例.

ロジスティック方程式と力学系 · 力学系と方程式 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

ロジスティック方程式と実数 · 実数と方程式 · 続きを見る »

差分法

数値解析における有限差分法(ゆうげんさぶんほう、finite-difference methods; FDM)あるいは単に差分法は、微分方程式を解くために微分を有限差分近似(差分商)で置き換えて得られる差分方程式<!-- ループリンク -->で近似するという離散化手法を用いる数値解法である。18世紀にオイラーが考案したと言われる。 今日ではFDMは偏微分方程式の数値解法として支配的な手法である.

ロジスティック方程式と差分法 · 差分法と方程式 · 続きを見る »

不定積分

関数の不定積分という用語には次に挙げる四種類の意味で用いられる場合がある。 (逆微分) 0) 微分の逆操作を意味する:すなわち、与えられた関数が連続関数であるとき、微分するとその関数に一致するような新たな関数(原始関数)を求める操作のこと、およびその原始関数の全体(集合)を 逆微分としての不定積分(antiderivative)と言う。 (積分論) 1) 一変数関数 に対して、定義域内の任意の閉区間 上の定積分が に一致する関数 を関数 の 不定積分 (indefinite integral) と言う。 (積分論) 2) 一変数関数の定義域内の定数 から変数 までの(端点が定数でない)積分で与えられる関数を関数 の を基点とする不定積分 (indefinite integral with base point) と言う。 (積分論) 3) ルベーグ積分論において定義域内の可測集合を変数とし、変数としての集合上での積分を値とする集合関数を関数 の 集合関数としての不定積分 (indefinite integral as a set-function) と言う。 海外の数学サイトでは wikipedia を含めて主として上記の (逆微分) 0) を記述している場合が多いが、岩波書店の数学辞典や積分論の現代的な専門書では上記の (積分論) での不定積分が記述されている。ただしこれらはそれぞれ無関係ではなく、後述するように、例えば (積分論) 1) は (積分論) 3) を数直線上で考えたものであって (逆微分) 0) と同等となるべきものであり、(積分論) 2) は本質的には (積分論) 1) や (積分論) 3) の一部分と見なすことができる。また (積分論) 2) から (逆微分) 0) を得ることもできるが、この対応は一般には全射でも単射でもない。これ以後、この項目で考える積分は、特に指定がない限り、リーマン積分であるものとする。 また後述するように、(積分論) の意味の不定積分を連続でない関数へ一般化すると、不定積分は通常の意味での原始関数となるとは限らなくなり、(初等数学) と一致しなくなるのだが、連続関数に対してはほぼ一致する概念であるため、しばしば混同して用いられる。.

ロジスティック方程式と不定積分 · 不定積分と方程式 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

ロジスティック方程式と微分方程式 · 微分方程式と方程式 · 続きを見る »

カオス理論

論(カオスりろん、、、)は、力学系の一部に見られる、数的誤差により予測できないとされている複雑な様子を示す現象を扱う理論である。カオス力学ともいう。 ここで言う予測できないとは、決してランダムということではない。その振る舞いは決定論的法則に従うものの、積分法による解が得られないため、その未来(および過去)の振る舞いを知るには数値解析を用いざるを得ない。しかし、初期値鋭敏性ゆえに、ある時点における無限の精度の情報が必要であるうえ、(コンピューターでは無限桁を扱えないため必然的に発生する)数値解析の過程での誤差によっても、得られる値と真の値とのずれが増幅される。そのため予測が事実上不可能という意味である。.

カオス理論とロジスティック方程式 · カオス理論と方程式 · 続きを見る »

数理モデル

数理モデル(すうりモデル、mathematical model)とは、通常は、時間変化する現象の計測可能な主要な指標の動きを模倣する、微分方程式などの「数学の言葉で記述した系」のことを言う。モデルは「模型」と訳され「数理模型」と呼ばれることもある。元の現象を表現される複雑な現実とすれば、モデル(模型)はそれの特別な一面を簡略化した形で表現した「言語」(いまの場合は数学)で、より人間に理解しやすいものとして構築される。構築されたモデルが、元の現象を適切に記述しているか否かは、数学の外の問題で、原理的には論理的には真偽は判定不可能である。人間の直観によって判定するしかない。どこまで精緻にモデル化を行ったとしても、得た観察を近似する論理的な説明に過ぎない。 数理モデルは、対象とする現象や、定式化の抽象度などによって様々なものがある。.

ロジスティック方程式と数理モデル · 数理モデルと方程式 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (&minus;1, &minus;2, &minus;3, &minus;4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

ロジスティック方程式と整数 · 整数と方程式 · 続きを見る »

上記のリストは以下の質問に答えます

ロジスティック方程式と方程式の間の比較

方程式が92を有しているロジスティック方程式は、123の関係を有しています。 彼らは一般的な8で持っているように、ジャカード指数は3.72%です = 8 / (123 + 92)。

参考文献

この記事では、ロジスティック方程式と方程式との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »