ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

レンポと熱力学温度

ショートカット: 違い類似点ジャカード類似性係数参考文献

レンポと熱力学温度の違い

レンポ vs. 熱力学温度

レンポ (47171 Lempo) は、海王星と2:3の軌道共鳴をしている太陽系外縁天体であり、外縁天体では初めて確認された「三重小惑星」である。アメリカ合衆国アリゾナ州のキットピーク国立天文台で、1999年10月にルイス=グレゴリー・シュトローガーが Low-Z 超新星捜索プログラムで撮影した画像をエリック・P・ルビンシュタインが調べている時に発見された。2002年9月に小惑星番号47171として登録された。 2001年12月8日にチャドウィック・トルヒージョとマイケル・E・ブラウンがハッブル宇宙望遠鏡 (HST) で撮影した画像から衛星が発見され、S/2001 1(後にS/2001 (47171) 1)という仮符号が与えられた。主星の直径が約400kmと推定されていたのに対し、衛星の推定直径は約140kmと比較的大きかった。2017にパハ (Paha) と名づけられた。 2005年に主星自体が近接した2個の天体からなる二重小惑星である可能性が指摘され、2007年と2009年のHSTによる観測で確認された。小惑星の衛星の命名規則によれば、中央の2個のうち小さい方は S/2009 (47171) 1 などとなるはずだが、観測チームは2個をそれぞれA1とA2、外側の1個(S/2001 (47171) 1)をBと呼んでいる。全体の質量は (12.75±0.06) kg、“B”単独での質量は 0.746 kg と推定されている。2017にA1とA2はレンポ (Lempo) とヒーシ (Hiisi) 名づけられた。 2個以上の衛星を持つ外縁天体には準惑星の冥王星(5個)とハウメア(2個)があるが、冥王星の第1衛星カロン以外の衛星の直径はいずれも主星の6分の1以下しかなく、これほど大きさの近い3個の天体からなる系が見つかったのは初めてである。 スピッツァー宇宙望遠鏡とHSTで行われた観測ではこの系の密度は非常に小さく、氷が緩く積み重なっているか、あるいは岩石で出来た密度の大きい核の周りを多孔性の殻が取り巻いていると考えられる。 冥王星を含む複数の外縁天体の探査を目的とした宇宙探査機ニュー・ホライズンズが2006年に打上げられる前、計画主任のアラン・スターンはバックアップ用の2号機を作る必要性を主張し、その探査目標の候補としてを挙げたことがある。. 熱力学温度(ねつりきがくおんど、)熱力学的温度(ねつりきがくてきおんど)とも呼ばれる。は、熱力学に基づいて定義される温度である。 国際量体系 (ISQ) における基本量の一つとして位置付けられ、次元の記号としてサンセリフローマン体の が用いられる。また、国際単位系 (SI) における単位はケルビン(記号: K)が用いられる。熱力学や統計力学に関する文献やそれらの応用に関する文献では、熱力学温度の意味で温度 という言葉を使うことが多い。 熱力学温度は平衡熱力学における基本的要請を満たすように定義される示強変数であり、そのような温度は一つに限らない。 熱力学温度が持つ基本的な性質の一つとして普遍性がある。具体的な物質の熱膨張などを基準として定められる温度は、選んだ物質に固有の性質をその定義に含んでしまい、特殊な状況を除いて温度の取り扱いが煩雑になる。熱力学温度はシャルルの法則や熱力学第二法則のような物質固有の性質に依存しない法則に基づいて定められるため、物質の選択にまつわる困難を避けることができる。 熱力学温度が持つもう一つの基本的な性質として、下限の存在が挙げられる。熱力学温度の下限は実現可能な熱力学的平衡状態熱力学や統計力学に関する文献では単に平衡状態と呼ばれることが多い。を決定する。この熱力学温度の下限は絶対零度と呼ばれる。 統計力学の分野においては逆温度が定義されしばしば熱力学温度に代わって用いられる。逆温度 は(理想気体温度の意味での)熱力学温度 に反比例する ことが知られ( はボルツマン定数)、このことが の名前の由来となっている。 また統計力学では「絶対零度を下回る」温度として負温度が導入されるが、負温度は熱力学や平衡統計力学の意味での温度とは異なる概念である。熱力学で用いられる通常の温度は平衡状態の系を特徴づける物理量だが、負温度は反転分布の実現するような非平衡系や系のエネルギーに上限が存在するような特殊な系を特徴づける量である。負温度はある種の非平衡系に対してカノニカル分布を拡張した際に、この分布に対する逆温度の逆数(をボルツマン定数で割ったもの)として定義され、負の値をとる。すなわち、負の逆温度 に対し負温度 は という関係が成り立つように定められる。この関係は通常の(正の)温度と逆温度の関係をそのまま非平衡系に対して適用したものとなっている。しかしながらその元となる逆温度と温度の対応関係は、統計力学で定義される諸々の熱力学ポテンシャルが熱力学で定義されたものと(漸近的に)一致するという要請から導かれるものであり、負温度が実現する系において同様の関係が成り立つと考える必然性はない。 熱力学温度はしばしば絶対温度(ぜったいおんど、absolute temperature)とも呼ばれる。多くの場合、熱力学温度と絶対温度は同義であるが、「絶対温度」という言葉の用法はまちまちであり「カルノーの定理や理想気体の状態方程式から定義できる自然な温度」を指すこともあれば、「温度単位としてケルビンを選んだ場合の温度」ないし「絶対零度を基準点とする温度」のようなより限定された意味で用いられることもある。 気体分子運動論によれば分子が持つ運動エネルギーの期待値は絶対零度において 0 となる。このとき、分子の運動は完全に停止していると考えられる。しかしながら、極低温の環境において古典力学に基づく運動論は完全に破綻するため、そのような古典的な描像は意味を持たない。.

レンポと熱力学温度間の類似点

レンポと熱力学温度は(ユニオンペディアに)共通で0ものを持っています。

上記のリストは以下の質問に答えます

レンポと熱力学温度の間の比較

熱力学温度が52を有しているレンポは、34の関係を有しています。 彼らは一般的な0で持っているように、ジャカード指数は0.00%です = 0 / (34 + 52)。

参考文献

この記事では、レンポと熱力学温度との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »