ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ラプラス変換と複素解析

ショートカット: 違い類似点ジャカード類似性係数参考文献

ラプラス変換と複素解析の違い

ラプラス変換 vs. 複素解析

関数解析学において、ラプラス変換(ラプラスへんかん、Laplace transform)とは、積分で定義される関数空間の間の写像(線型作用素)の一種。関数変換。 ラプラス変換の名はピエール=シモン・ラプラスにちなむ。 ラプラス変換によりある種の微分・積分は積などの代数的な演算に置き換わるため、制御工学などにおいて時間領域の(とくに超越的な)関数を別の領域の(おもに代数的な)関数に変換することにより、計算方法の見通しを良くするための数学的な道具として用いられる。 フーリエ変換を発展させて、より実用本位で作られた計算手法である。1899年に電気技師であったオリヴァー・ヘヴィサイドが回路方程式を解くための実用的な演算子を経験則として考案して発表し、後に数学者がその演算子に対し厳密に理論的な裏付けを行った経緯がある。理論的な根拠が曖昧なままで発表されたため、この計算手法に対する懐疑的な声も多かった。この「ヘヴィサイドの演算子」の発表の後に、多くの数学者達により数学的な基盤は1780年の数学者ピエール=シモン・ラプラスの著作にある事が指摘された(この著作においてラプラス変換の公式が頻繁に現れていた)。 従って、数学の中ではかなり応用寄りの分野である。ラプラス変換の理論は微分積分、線形代数、ベクトル解析、フーリエ解析、複素解析を基盤としているため、理解するためにはそれらの分野を習得するべきである。 これと類似の解法として、より数学的な側面から作られた演算子法がある。こちらは演算子の記号を多項式に見立て、代数的に変形し、公式に基づいて特解を求める方法である。. 数学の分科である複素解析(ふくそかいせき、complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。.

ラプラス変換と複素解析間の類似点

ラプラス変換と複素解析は(ユニオンペディアに)共通で12ものを持っています: 多項式実数三角関数微分可能微分方程式ガンマ関数積分法留数複素解析複素数関数 (数学)自然対数

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

ラプラス変換と多項式 · 多項式と複素解析 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

ラプラス変換と実数 · 実数と複素解析 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

ラプラス変換と三角関数 · 三角関数と複素解析 · 続きを見る »

微分可能

微分可能(びぶんかのう).

ラプラス変換と微分可能 · 微分可能と複素解析 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

ラプラス変換と微分方程式 · 微分方程式と複素解析 · 続きを見る »

ガンマ関数

1.

ガンマ関数とラプラス変換 · ガンマ関数と複素解析 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

ラプラス変換と積分法 · 積分法と複素解析 · 続きを見る »

留数

数学、殊に複素解析学における留数(りゅうすう、residue)は、孤立特異点を囲む経路に沿う有理型関数の複素線積分により得られる複素数である。.

ラプラス変換と留数 · 留数と複素解析 · 続きを見る »

複素解析

数学の分科である複素解析(ふくそかいせき、complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。.

ラプラス変換と複素解析 · 複素解析と複素解析 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

ラプラス変換と複素数 · 複素数と複素解析 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

ラプラス変換と関数 (数学) · 複素解析と関数 (数学) · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

ラプラス変換と自然対数 · 自然対数と複素解析 · 続きを見る »

上記のリストは以下の質問に答えます

ラプラス変換と複素解析の間の比較

複素解析が92を有しているラプラス変換は、54の関係を有しています。 彼らは一般的な12で持っているように、ジャカード指数は8.22%です = 12 / (54 + 92)。

参考文献

この記事では、ラプラス変換と複素解析との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »