ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ヤング率と固体

ショートカット: 違い類似点ジャカード類似性係数参考文献

ヤング率と固体の違い

ヤング率 vs. 固体

ヤング率(ヤングりつ、Young's modulus)は、フックの法則が成立する弾性範囲における、同軸方向のひずみと応力の比例定数である。この名称はトマス・ヤングに由来する。縦弾性係数(たてだんせいけいすう、modulus of longitudinal elasticity)とも呼ばれる。. 固体インスリンの単結晶形態 固体(こたい、solid)は物質の状態の一つ。固体内の原子は互いに強く結合しており、規則的な幾何学的格子状に並ぶ場合(金属や通常の氷などの結晶)と、不規則に並ぶ場合(ガラスなどのアモルファス)がある。 液体や気体と比較して、変形あるいは体積変化が非常に小さい。変形が全く起こらない剛体は理想化された固体の一つである。連続体力学においては、固体は静止状態においてもせん断応力の発生する物体と捉えられる。液体のように容器の形に合わせて流動することがなく、気体のように拡散して容器全体を占めることもない。 固体を扱う物理学は固体物理学と呼ばれ、物性物理学の一分野である。また物質科学はそもそも、強度や相変化といった固体の性質を扱う学問であり、固体物理学と重なる部分が多い。さらに固体化学の領域もこれらの学問と重なるが、特に新しい物質の開発(化学合成)に重点が置かれている。 今まで知られている最も軽い固体はエアロゲルであり、そのうち最も軽いものでは密度は約 1.9 mg/cm3 と水の密度の530分の1程度である。.

ヤング率と固体間の類似点

ヤング率と固体は(ユニオンペディアに)共通で26ものを持っています: 原子ひずみ強度弾性弾性率応力ナイロンポリプロピレンポリエチレンポリカーボネートポリスチレンフックの法則アルミニウムガラスコンクリートゴムジルコニア結晶炭化ケイ素炭化タングステン融点金属酸化アルミニウム降伏 (物理)木材

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

ヤング率と原子 · 原子と固体 · 続きを見る »

ひずみ

ひずみ(Strain)は、連続体力学における物体の変形状態を表す尺度であり、物体の基準(初期)状態の単位長さあたりに物体内の物質点がどれだけ変位するかを示す。.

ひずみとヤング率 · ひずみと固体 · 続きを見る »

強度

材料の強度(きょうど)あるいは強さ(つよさ)とは、その材料が持つ、変形や破壊に対する抵抗力を指す。 古くから経験的に把握されていた材料における強度の概念について最初に定量化を試みたのはレオナルド・ダ・ヴィンチであるが、彼の個人的なノートでの記述に限られていた。一般に公開された書物としては1638年に出版されたガリレオ・ガリレイの『新科学対話』における記述が最初である。18世紀に入ると引張試験や曲げ試験など様々な強度試験の方法が確立し、ステファン・ティモシェンコの確立した材料力学の考え方とともに建築分野や機械設計分野の基礎を支えていると一般のエンジニアには思われている。しかしながら、戦場の最前線のごとく、破損した材料の屍を築く領域や、永久には持たないならその寿命を工学的に管理するなど分野においては、破壊力学(靭性)的考え方を採用することも重要で、一般の人々の感覚に還元すると強度と靭性のバランスポイントがありそこが最も強度が高いという認識になる。 強度を表す指標は様々であり、材料の変形挙動の種類によって以下のように用語を使い分ける。; 降伏強さ; 引張強さ; 延性; 破壊エネルギー(靭性); 曲げ強度(抗折力); 硬度.

ヤング率と強度 · 固体と強度 · 続きを見る »

弾性

弾性(だんせい、elasticity)とは、応力を加えるとひずみが生じるが、除荷すれば元の寸法に戻る性質をいう。一般には固体について言われることが多い。 弾性は性質を表す語であって、それ自体は数値で表される指標ではない。弾性の程度を表す指標としては、弾性限界、弾性率等がある。弾性限界は、応力を加えることにより生じたひずみが、除荷すれば元の寸法に戻る応力の限界値である。弾性率は、応力とひずみの間の比例定数であって、ヤング率もその一種である。 一般的にはゴム等の材料に対して「高弾性」という表現が用いられる。この場合の「高弾性」とは弾性限界が大きいことを指す。しかしながら、前述の通り、弾性に関する指標は弾性限界だけでなく弾性率等があって、例えば、ゴムの場合には弾性限界は大きいが弾性率は小さいため、「高弾性」という表現は混同を生じる恐れがある。 英語で弾性をというが、この語源はギリシャ語の「ελαστικος(elastikos:推進力のある、弾みのある)」からきている。また、一般的には弾力や弾力性等の語が使われるが、これらはほぼ弾性と同義である。 現実に存在する物質は必ず弾性の他に粘性を持ち、粘弾性体である。物質が有する粘弾性のうち弾性に特に着目した場合、弾性を有する物質を弾性体と呼ぶ。.

ヤング率と弾性 · 固体と弾性 · 続きを見る »

弾性率

弾性率(だんせいりつ、elastic modulus)は、変形のしにくさを表す物性値であり、弾性変形における応力とひずみの間の比例定数の総称である。弾性係数あるいは弾性定数とも呼ばれる。 1807年にトマス・ヤングによって導入された。.

ヤング率と弾性率 · 固体と弾性率 · 続きを見る »

応力

応力(おうりょく、ストレス、stress)とは、物体連続体などの基礎仮定を満たすものとする。の内部に生じる力の大きさや作用方向を表現するために用いられる物理量である。物体の変形や破壊などに対する負担の大きさを検討するのに用いられる。 この物理量には応力ベクトル と応力テンソル の2つがあり、単に「応力」といえば応力テンソルのことを指すことが多い。応力テンソルは座標系などを特別に断らない限り、主に2階の混合テンソルおよび混合ベクトルとして扱われる(混合テンソルについてはテンソル積#テンソル空間とテンソルを参照)。応力ベクトルと応力テンソルは、ともに連続体内部に定義した微小面積に作用する単位面積あたりの力として定義される。そのため、それらの単位は、SIではPa (N/m2)、重力単位系ではkgf/mm2で、圧力と同じである。.

ヤング率と応力 · 固体と応力 · 続きを見る »

ナイロン

ナイロン6とナイロン6,6の分子構造 ナイロン(nylon)は、ポリアミド合成樹脂の種類である。当初は主に繊維として使われた。世界初の合成繊維のナイロン6,6(6,6-ナイロンなどとも)が含まれる。 1935年、アメリカのデュポン社のウォーレス・カロザースが合成に成功した。ナイロンは本来、インビスタ社(旧デュポン・テキスタイル・アンド・インテリア社)の商品名だが、現在ではポリアミド系繊維(単量体がアミド結合(-CO-NH-)により次々に縮合した高分子)の総称として定着している。 ナイロン(nylon)の名称は、「伝線(run)しないパンティストッキング用の繊維」を意図した「norun」に由来する。 また、ナイロン登場前に絹の圧倒的シェアを誇っていた日本に対して「Now You Lousy Old Nipponese」(古い日本製品はもうダメだ)の頭文字をとったという説もある 種類としては、ナイロン6、ナイロン6,6、ナイロン4,6などがある。これらの数字は、合成原料の炭素原子の数に由来す 構造(右図)は、.

ナイロンとヤング率 · ナイロンと固体 · 続きを見る »

ポリプロピレン

PPの樹脂識別コード ポリプロピレン (polypropylene) 略称PPは、プロピレンを重合させた熱可塑性樹脂である。工業的に入手可能であり、包装材料、繊維、文具、プラスチック部品、種々の再利用可能な容器、実験器具、スピーカーコーン、自動車部品、紙幣など幅広い用途をもっている。汎用樹脂の中で比重が最も小さく、水に浮かぶ。強度が高く、吸湿性がなく、耐薬品(酸、アルカリを含む)性に優れている。しかし、染色性が悪く、耐光性が低い為、ファッション性の高い服地の繊維用途には向かない。汎用樹脂の中では最高の耐熱性である。 2011年の全世界の生産能力、生産実績、総需要は、おのおの62,052千トン、50,764千トン、49,366千トンであった。一方、2012年の日本国内総需要は、2,297,562トンであった。同年の生産・輸入・輸出は、おのおの2,390,256トン(415,809百万円)、302,133トン(51,258百万円)、308,229トン(41,035百万円)であった。.

ポリプロピレンとヤング率 · ポリプロピレンと固体 · 続きを見る »

ポリエチレン

製造法によっては、ポリエチレンは分岐構造をもつ。 ポリエチレン(polyethylene、polyethene)、略称PEは、エチレンが重合した構造を持つ高分子である。最も単純な構造をもつ高分子であり、容器や包装用フィルムをはじめ、様々な用途に利用されている。 基本的にはメチレン(-CH2-)のくり返しのみで構成されているが、重合法によって平均分子量や分枝数、結晶性に違いが生じ、密度や熱特性、機械特性などもそれに応じて異なる。 一般に酸やアルカリに安定。低分子量のものは炭化水素系溶剤に膨潤するが、高分子量のものは耐薬性に非常に優れる。濡れ性は低い。絶縁性が高く、静電気を帯びやすい。.

ポリエチレンとヤング率 · ポリエチレンと固体 · 続きを見る »

ポリカーボネート

ポリカーボネート()は、熱可塑性プラスチックの一種。化合物名字訳基準に則った呼称はポリカルボナート。様々な製品の材料として利用されている。モノマー単位同士の接合部は、すべてカーボネート基 (-O-(C.

ポリカーボネートとヤング率 · ポリカーボネートと固体 · 続きを見る »

ポリスチレン

ポリスチレン (polystyrene) とはスチレンをモノマーとするポリマーである。略号はPSで、リサイクルマーク(SPIコード)は6である。スチロール樹脂とも呼ばれる。.

ポリスチレンとヤング率 · ポリスチレンと固体 · 続きを見る »

フックの法則

フックの法則(フックのほうそく、Hooke's law)は、力学や物理学における構成則の一種で、ばねの伸びと弾性限度以下の荷重は正比例するという近似的な法則である。弾性の法則(だんせいのほうそく)とも呼ばれる。フックの法則が近似として成り立つ物質を線形弾性体またはフック弾性体 (Hookean elastic material) と呼ぶ。 フックの法則は17世紀のイギリスの物理学者、ロバート・フックが提唱したものであり、彼の名を取ってフックの法則と名づけられた。フックは1676年にラテン語のアナグラムでこの法則を記述し、1678年にアナグラムの答えが、即ち であると発表した。フックの法則に従う系では、荷重は伸びに正比例し と表される。ここで.

フックの法則とヤング率 · フックの法則と固体 · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

アルミニウムとヤング率 · アルミニウムと固体 · 続きを見る »

ガラス

ガラス工芸 en) 建築物の外壁に用いられているガラス ガラス(、glass)または硝子(しょうし)という語は、物質のある状態を指す場合と特定の物質の種類を指す場合がある。.

ガラスとヤング率 · ガラスと固体 · 続きを見る »

コンクリート

ンクリートブロック コンクリート(、混凝土)は、砂、砂利、水などをセメントで凝固させた硬化物で建築土木工事の材料として多く利用される。セメントを水で溶いて混ぜただけのものをセメントペースト、これに細骨材の砂を練混ぜたものをモルタルと呼び区別する。.

コンクリートとヤング率 · コンクリートと固体 · 続きを見る »

ゴム

ム(gom)は、元来は植物体を傷つけるなどして得られる無定形かつ軟質の高分子物質のことである。現在では、後述の天然ゴムや合成ゴムのような有機高分子を主成分とする一連の弾性限界が高く弾性率の低い材料すなわち弾性ゴムを指すことが多い。漢字では「護謨」と書き、この字はゴム関連の会社名などに使われることが多い。エラストマーの一種であり、エラストマーはゴムと熱可塑性エラストマーの二つに分けられる。 天然ゴムの原料となるラテックスの採取.

ゴムとヤング率 · ゴムと固体 · 続きを見る »

ジルコニア

ルコニア(二酸化ジルコニウム、化学式:ZrO2)は 、ジルコニウムの酸化物である。常態では白色の固体。融点が2700℃と高いため、耐熱性セラミックス材料として利用されている。また、透明でダイヤモンドに近い高い屈折率を有することから模造ダイヤとも呼ばれ、宝飾品としても用いられている。 天然にはとして産出する。.

ジルコニアとヤング率 · ジルコニアと固体 · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

ヤング率と結晶 · 固体と結晶 · 続きを見る »

炭化ケイ素

炭化ケイ素(Silicon Carbide、化学式SiC)は、炭素(C)とケイ素(Si)の1:1 の化合物で、天然では、隕石中にわずかに存在が確認される。鉱物学上「モアッサン石」(Moissanite)と呼ばれ、また、19世紀末に工業化した会社の商品名から「カーボランダム」と呼ばれることもある。 ダイヤモンドの弟分、あるいはダイヤモンドとシリコンの中間的な性質を持ち、硬度、耐熱性、化学的安定性に優れることから、研磨材、耐火物、発熱体などに使われ、また半導体でもあることから電子素子の素材にもなる。結晶の光沢を持つ、黒色あるいは緑色の粉粒体として、市場に出る。.

ヤング率と炭化ケイ素 · 固体と炭化ケイ素 · 続きを見る »

炭化タングステン

炭化タングステン(英語:Tungsten carbide、化学式:WC)とは等モル量のタングステン原子と炭素原子からなる無機化合物(炭化物)である。英語名に基づき、タングステンカーバイドとも呼ばれる。ヤング率は約550 GPaに達し、鋼の約2倍の剛性を持ち、鋼やチタンよりはるかに緻密な構造を呈する。基本的な性状は粉状で灰色のα-酸化アルミニウム(コランダム・サファイア・ルビー)に匹敵する硬さを持つが、産業機械等で使用するため微粉末化の後、粉末冶金法を用いコバルト等のバインダーとともに所定の形状に高圧で押し固めたものを焼き固めて用いる(超硬合金)。超硬合金化した炭化タングステンの研磨加工には窒化ホウ素(高圧相)やダイヤモンドが用いられる。.

ヤング率と炭化タングステン · 固体と炭化タングステン · 続きを見る »

融点

融点(ゆうてん、Schmelzpunkt、point de fusion、melting point)とは、固体が融解し液体になる時の温度のことをいう。ヒステリシスが無い場合には凝固点(液体が固体になる時の温度)と一致する。また、三重点すなわち平衡蒸気圧下の融点は物質固有の値を取り、不純物が含まれている場合は凝固点降下により融点が低下することから物質を同定したり、純度を確認したりする手段として用いられる。 熱的に不安定な物質は溶融と共に分解反応が生じる場合もある。その場合の温度は分解点と呼ばれる場合があり、融点に(分解)と併記されることがある。.

ヤング率と融点 · 固体と融点 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

ヤング率と金属 · 固体と金属 · 続きを見る »

酸化アルミニウム

酸化アルミニウム(さんかアルミニウム、)は、化学式がAlOで表されるアルミニウムの両性酸化物である。通称はアルミナ(α-アルミナ)、礬土(ばんど)。天然にはコランダム、ルビー、サファイアとして産出する。おもに金属アルミニウムの原料として使われるほか、硬度を生かして研磨剤、高融点を生かして耐火物としての用途もある。立方晶系のγ-アルミナは高比表面積を持つことから触媒として重要である。.

ヤング率と酸化アルミニウム · 固体と酸化アルミニウム · 続きを見る »

鋼(はがね、こう、釼は異体字、steel)とは、炭素を0.04~2パーセント程度含む鉄の合金。鋼鉄(こうてつ)とも呼ばれる。強靭で加工性に優れ、ニッケル・クロムなどを加えた特殊鋼や鋳鋼等とあわせて鉄鋼(てっこう)とも呼ばれ、産業上重要な位置を占める。.

ヤング率と鋼 · 固体と鋼 · 続きを見る »

降伏 (物理)

降伏(こうふく)とは、金属材料などに応力を加えていくと現れる現象である。例えば鋼に応力を加えていくと、応力-ひずみ線図は図1のような挙動を示す。図1では、応力が点2に至るとひずみは大きくなるのに対し引っ張り応力は下降する。このとき鋼は降伏したという。点2に至るまでの変形は弾性変形であり荷重を除荷すれば形状は元に戻るのに対し、降伏後は塑性変形になり除荷しても弾性変形分(点2までの変形)以上は戻ることはない。 降伏中の最大の応力を上降伏点(点2)、最低の応力を下降伏点という。実用上は上降伏点が、弾性変形の最大基準の応力としてよく利用されている。.

ヤング率と降伏 (物理) · 固体と降伏 (物理) · 続きを見る »

木材

材木店の店頭に並ぶ各種木材 木材(もくざい)とは、様々な材料・原料として用いるために伐採された樹木の幹の部分を指す呼称。 その用途は、切削など物理的加工(木工)された木製品に限らず、紙の原料(木材パルプ)また薪や木炭に留まらない化学反応を伴うガス化・液化を経たエネルギー利用や化学工業の原料使用、飼料化などもある岡野 p.147-169 6.エピローグ-その将来を展望する-。樹皮を剥いだだけの木材は丸太(まるた)と呼ばれる。材木(ざいもく)も同義だが、これは建材や道具類の材料などに限定する場合もある。.

ヤング率と木材 · 固体と木材 · 続きを見る »

上記のリストは以下の質問に答えます

ヤング率と固体の間の比較

固体が256を有しているヤング率は、57の関係を有しています。 彼らは一般的な26で持っているように、ジャカード指数は8.31%です = 26 / (57 + 256)。

参考文献

この記事では、ヤング率と固体との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »