ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

モル質量と元素

ショートカット: 違い類似点ジャカード類似性係数参考文献

モル質量と元素の違い

モル質量 vs. 元素

。--> 物質のモル質量(モルしつりょう、molar mass)とは、その物質の単位物質量当たりの質量である。物質の質量をその物質の物質量で割ったものに等しいグリーンブック (2009) p. 57. 元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

モル質量と元素間の類似点

モル質量と元素は(ユニオンペディアに)共通で29ものを持っています: 原子原子量単体同位体塩化ナトリウム塩素密度中性子化学物質リチウムリンフッ素分子アボガドロの法則イオンケイ素国際純正・応用化学連合硫黄空気窒素炭素酸素陽子核種水素

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

モル質量と原子 · 元素と原子 · 続きを見る »

原子量

原子量(げんしりょう、英: atomic weight)または相対原子質量(そうたいげんししつりょう、英:relative atomic mass)とは、「一定の基準によって定めた原子の質量」原子量、『理化学事典』、第5版、岩波書店。ISBN 978-4000800907。である。 その基準は歴史的変遷を経ており、現在のIUPACの定義によれば1個の原子の質量の原子質量単位に対する比であり、Eを原子や元素を表す記号として Ar(E) という記号で表される。すなわち12C原子1個の質量に対する比の12倍である。元素に同位体が存在する場合は核種が異なるそれぞれの同位体ごとに原子の質量が異なるが、ほとんどの元素において同位体存在比は一定なので、原子量は存在比で補正された元素ごとの平均値として示される。同位体存在比の精度が変動するため、公示されている原子量の値や精度も変動する。 質量と質量との比なので比重と同様に無次元量だが、その数値は定義上、1個の原子の質量を原子質量単位で表した値に等しい。また物質量が1molの原子の質量をg単位で表した数値、すなわちg·mol−1単位で表した原子のモル質量をモル質量定数 1 g·mol−1 で除して単位を除去した数値にも等しい。 同位体存在比は、精度を高めると試料の由来(たとえば産地、地質学的年代)によって厳密には異なる。測定精度の向上と各試料の全天然存在量予測の変動により、同位体存在比の精度が変動する。そのことによりIUPACの下部組織である (CIAAW) により定期的に「原子量表」の改訂が発表され、これが「標準原子量」と呼ばれている。その改訂は隔年で行われ、奇数年に発表されている。日本化学会原子量小委員会はこの表をもとに原子量表を作成し、日本化学会会誌「化学と工業」4月号で毎年発表している。 原子量表の改定や試料間の原子量の差異があるとは言え、有効数字3桁程度では大部分の元素の原子量は十分に安定している(主な例外: リチウム、水素)。そのため、化学反応等においては、実用上は問題を生じない。一方、精密分析や公示文書の値を計算する場合は、最新の原子量表の値を使うべきである。 1961年まで、物理学では16Oの質量を、化学では天然同位体比の酸素の質量を基準としていた。.

モル質量と原子量 · 元素と原子量 · 続きを見る »

単体

単体(たんたい、simple substance)とは、単一の元素からできている純物質のことである。 水素 (H2)、酸素 (O2) などの等核二原子分子や、ナトリウム (Na)、金 (Au) などの純金属が含まれる。 これに対して、水 (H2O) など2種類以上の元素からできている純物質は化合物という。 酸素 (O2) とオゾン (O3)、あるいは赤リンと黄リンのように、同じ元素からできた単体であっても、異なる性質を示す場合がある。 このような単体同士の関係を同素体という。 たとえば、ダイヤモンドとグラファイトを混ぜ合わせた物質は、単一の炭素原子からできているが、密度・融点・沸点などの物理的性質が一定にさだまらないので純物質ではなく(したがって単体でもなく)、2種類の単体(炭素の同素体)の混合物である。.

モル質量と単体 · 元素と単体 · 続きを見る »

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。.

モル質量と同位体 · 元素と同位体 · 続きを見る »

塩化ナトリウム

塩化ナトリウム(えんかナトリウム、sodium chloride)は化学式 NaCl で表されるナトリウムの塩化物である。単に塩(しお)、あるいは食塩と呼ばれる場合も多いが、本来「食塩」は食用、医療用に調製された塩化ナトリウム製品を指す用語である。式量58.44である。 人(生体)を含めた哺乳類をはじめとする地球上の大半の生物にとっては、必須ミネラルであるナトリウム源として、生命維持になくてはならない重要な物質である。 天然には岩塩として存在する。また、海水の主成分として世界に広く分布するでもある(約2.8%)。この他、塩湖や温泉(食塩泉)などにも含有されていることで知られる。.

モル質量と塩化ナトリウム · 元素と塩化ナトリウム · 続きを見る »

塩素

Chlore lewis 塩素(えんそ、chlorine)は原子番号17の元素。元素記号は Cl。原子量は 35.45。ハロゲン元素の一つ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の臭いを持つ黄緑色の気体で、腐食性と強い毒を持つ。.

モル質量と塩素 · 元素と塩素 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

モル質量と密度 · 元素と密度 · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

モル質量と中性子 · 中性子と元素 · 続きを見る »

化学物質

化学物質(かがくぶっしつ、chemical substance)とは、分野や文脈に応じて以下のような様々な意味で用いられている言葉である。.

モル質量と化学物質 · 元素と化学物質 · 続きを見る »

リチウム

リチウム(lithium、lithium )は原子番号 3、原子量 6.941 の元素である。元素記号は Li。アルカリ金属元素の一つで白銀色の軟らかい元素であり、全ての金属元素の中で最も軽く、比熱容量は全固体元素中で最も高い。 リチウムの化学的性質は、他のアルカリ金属元素よりもむしろアルカリ土類金属元素に類似している。酸化還元電位は全元素中で最も低い。リチウムには2つの安定同位体および8つの放射性同位体があり、天然に存在するリチウムは安定同位体である6Liおよび7Liからなっている。これらのリチウムの安定同位体は、中性子の衝突などによる核分裂反応を起こしやすいため恒星中で消費されやすく、原子番号の近い他の元素と比較して存在量は著しく小さい。 1817年にヨアン・オーガスト・アルフェドソンがペタル石の分析によって発見した。アルフェドソンの所属していた研究室の主催者であったイェンス・ベルセリウスによって、ギリシャ語で「石」を意味する lithos に由来してリチウムと名付けられた。アルフェドソンは金属リチウムの単離には成功せず、1821年にウィリアム・トマス・ブランドが電気分解によって初めて金属リチウムの単離に成功した。1923年にドイツのメタルゲゼルシャフト社が溶融塩電解による金属リチウムの工業的生産法を発見し、その後の金属リチウム生産へと繋がっていった。第二次世界大戦の戦中戦後には航空機用の耐熱グリースとしての小さな需要しかなかったが、冷戦下には水素爆弾製造のための需要が急激に増加した。その後冷戦の終了により核兵器用のリチウムの需要が大幅に冷え込んだものの、2000年代までにはリチウムイオン二次電池用のリチウム需要が増加している。 リチウムは地球上に広く分布しているが、非常に高い反応性のために単体としては存在していない。地殻中で25番目に多く存在する元素であり、火成岩や塩湖かん水中に多く含まれる。リチウムの埋蔵量の多くはアンデス山脈沿いに偏在しており、最大の産出国はチリである。海水中にはおよそ2300億トンのリチウムが含まれており、海水からリチウムを回収する技術の研究開発が進められている。世界のリチウム市場は少数の供給企業による寡占状態であるため、資源の偏在性と併せて需給ギャップが懸念されている。 リチウムは陶器やガラスの添加剤、光学ガラス、電池(一次電池および二次電池)、耐熱グリースや連続鋳造のフラックスとして利用される。2011年時点で最大の用途は陶器やガラス用途であるが、二次電池用途での需要が将来的に増加していくものと予測されている。リチウムの同位体は水素爆弾や核融合炉などにおいて核融合燃料であるトリチウムを生成するために利用されている。 リチウムは腐食性を有しており、高濃度のリチウム化合物に曝露されると肺水腫が引き起こされることがある。また、妊娠中の女性がリチウムを摂取することでの発生リスクが増加するといわれる。リチウムは覚醒剤を合成するためのバーチ還元における還元剤として利用されるため、一部の地域ではリチウム電池の販売が規制の対象となっている。リチウム電池はまた、短絡によって急速に放電して過熱することで爆発が起こる危険性がある。.

モル質量とリチウム · リチウムと元素 · 続きを見る »

リン

リン(燐、、)は原子番号 15、原子量 30.97 の元素である。元素記号は P。窒素族元素の一つ。白リン(黄リン)・赤リン・紫リン・黒リンなどの同素体が存在する。+III(例:六酸化四リン PO)、+IV(例:八酸化四リン PO)、+V(例:五酸化二リン PO)などの酸化数をとる。.

モル質量とリン · リンと元素 · 続きを見る »

フッ素

フッ素(フッそ、弗素、fluorine)は原子番号 9 の元素。元素記号はラテン語のFluorumの頭文字よりFが使われる。原子量は 18.9984 で、最も軽いハロゲン元素。また、同元素の単体であるフッ素分子(F2、二弗素)をも示す。 電気陰性度は 4.0 で全元素中で最も大きく、化合物中では常に -1 の酸化数を取る。反応性が高いため、天然には蛍石や氷晶石などとして存在し、基本的に単体では存在しない。.

フッ素とモル質量 · フッ素と元素 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

モル質量と分子 · 元素と分子 · 続きを見る »

アボガドロの法則

アボガドロの法則(アボガドロのほうそく、英語:Avogadro's law)とは、同一圧力、同一温度、同一体積のすべての種類の気体には同じ数の分子が含まれるという法則である。 1811年にアメデオ・アボガドロがゲイ=リュサックの気体反応の法則とジョン・ドルトンの原子説の矛盾を説明するために仮説として提案した。 少し遅れて1813年にアンドレ=マリ・アンペールも独立に同様の仮説を提案したことから、アボガドロ-アンペールの法則ともいう。 また特に分子という概念を提案した点に着目して分子説(ぶんしせつ)とも呼ぶ。 元素、原子、分子の3つの概念を区別し、またそれらに対応する化学当量、原子量、分子量の違いを区別する上で鍵となる仮説である。 アボガドロの仮説は提案後半世紀近くの間、一部の化学者以外にはほとんど忘れ去られていた。 そのため、化学当量と原子量、分子量の区別があいまいになり、化学者によって用いる原子量の値が異なるという事態に陥っていた。 1860年のにおいてスタニズラオ・カニッツァーロによりアボガドロの仮説についての解説が行なわれ、これを聞いた多くの化学者が仮説を受け入れ原子量についての混乱は徐々に解消されていった。 その後、問題になったのはアボガドロの提案した分子という存在が実在するかどうかであった。 分子の実在を主張する側からは気体分子運動論が提案され、気体の状態方程式などが説明されるに至った。 しかし一方で実証主義の立場から未だ観測できていない分子はあくまで理論の説明に都合の良い仮説と主張する物理学者、化学者も多かった。 この問題は最終的には1905年のアルベルト・アインシュタインによるブラウン運動の理論の提案とジャン・ペランによるその理論の実証により間接的に分子の実在が証明されることによって解決した。 現在では分子の実在が確認されたことから、アボガドロの仮説はアボガドロの法則と呼ばれており、分子量と同じグラム数の気体が含む分子の数を表す物理定数を彼の名を冠してアボガドロ定数と呼んでいる。.

アボガドロの法則とモル質量 · アボガドロの法則と元素 · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

イオンとモル質量 · イオンと元素 · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

ケイ素とモル質量 · ケイ素と元素 · 続きを見る »

国際純正・応用化学連合

国際純正・応用化学連合(こくさいじゅんせい・おうようかがくれんごう、International Union of Pure and Applied Chemistry、IUPAC)は、各国の化学者を代表する国内組織の連合である国際科学会議の参加組織である。IUPACの事務局はノースカロライナ大学チャペルヒル校・デューク大学・ノースカロライナ州立大学が牽引するリサーチ・トライアングル・パーク(アメリカ合衆国ノースカロライナ州)にある。また、本部は、スイスのチューリッヒにある。。2012年8月1日現在の事務局長は、ジョン・ピーターソンが務めている。 IUPACは、1919年に国際応用化学協会(International Association of Chemical Societies)を引き継いで設立された。会員となる各国の組織は、各国の化学会や科学アカデミー、または化学者を代表するその他の組織である。54カ国の組織と3つの関連組織が参加している。IUPACの内部組織である命名法委員会は、元素や化合物の命名の標準(IUPAC命名法)として世界的な権威として認知されている。創設以来、IUPACは、各々の責任を持つ多くの異なる委員会によって運営されてきた retrieved 15 April 2010。これらの委員会は、命名法の標準化を含む多くのプロジェクトを走らせ retrieved 15 April 2010、化学を国際化する道を探し retrieved 15 April 2010、また出版活動を行っている retrieved 15 April 2010 retrieved 15 April 2010。 IUPACは、化学やその他の分野での命名法の標準化で知られているが、IUPACは、化学、生物学、物理学を含む多くの分野の出版物を発行している。これらの分野でIUPACが行った重要な仕事には、核酸塩基配列コード名の標準化や、環境科学者や化学者、物理学物のための本の出版、科学教育の改善の主導等である 9 July 2009. Retrieved on 17 February 2010. Retrieved 15 April 2010。また、最古の委員会の1つであるによる元素の原子量の標準化によっても知られている。.

モル質量と国際純正・応用化学連合 · 元素と国際純正・応用化学連合 · 続きを見る »

硫黄

硫黄(いおう、sulfur, sulphur)は原子番号 16、原子量 32.1 の元素である。元素記号は S。酸素族元素の一つ。多くの同素体や結晶多形が存在し、融点、密度はそれぞれ異なる。沸点 444.674 ℃。大昔から自然界において存在が知られており、発見者は不明になっている。硫黄の英名 sulfur は、ラテン語で「燃える石」を意味する言葉に語源を持っている。.

モル質量と硫黄 · 元素と硫黄 · 続きを見る »

空気

気(くうき)とは、地球の大気圏の最下層を構成している気体で、人類が暮らしている中で身の回りにあるものをいう。 一般に空気は、無色透明で、複数の気体の混合物からなり、その組成は約8割が窒素、約2割が酸素でほぼ一定である。また水蒸気が含まれるがその濃度は場所により大きく異なる。工学など空気を利用・研究する分野では、水蒸気を除いた乾燥空気(かんそうくうき, dry air)と水蒸気を含めた湿潤空気(しつじゅんくうき, wet air)を使い分ける。.

モル質量と空気 · 元素と空気 · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

モル質量と窒素 · 元素と窒素 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

モル質量と炭素 · 元素と炭素 · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

モル質量と銅 · 元素と銅 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

モル質量と酸素 · 元素と酸素 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

モル質量と鉄 · 元素と鉄 · 続きを見る »

鉛(なまり、lead、plumbum、Blei)とは、典型元素の中の金属元素に分類される、原子番号が82番の元素である。なお、元素記号は Pb である。.

モル質量と鉛 · 元素と鉛 · 続きを見る »

陽子

陽子(ようし、())とは、原子核を構成する粒子のうち、正の電荷をもつ粒子である。英語名のままプロトンと呼ばれることも多い。陽子は電荷+1、スピン1/2のフェルミ粒子である。記号 p で表される。 陽子とともに中性子によって原子核は構成され、これらは核子と総称される。水素(軽水素、H)の原子核は、1個の陽子のみから構成される。電子が離れてイオン化した水素イオン(H)は陽子そのものであるため、化学の領域では水素イオンをプロトンと呼ぶことが多い。 原子核物理学、素粒子物理学において、陽子はクォークが結びついた複合粒子であるハドロンに分類され、2個のアップクォークと1個のダウンクォークで構成されるバリオンである。ハドロンを分類するフレーバーは、バリオン数が1、ストレンジネスは0であり、アイソスピンは1/2、超電荷は1/2となる。バリオンの中では最も軽くて安定である。.

モル質量と陽子 · 元素と陽子 · 続きを見る »

核種

核種(かくしゅ、、または nuclear species小田稔ほか編、『』、研究社、1998年、項目「nuclide」より。ISBN 978-4-7674-3456-8)とは、原子核の組成、すなわち核の中の陽子の数、中性子の数及び核のエネルギー準位によって規定される特定の原子の種類を言う。米国の核化学者 T. P. Kohman によって提案された。 核種は原子核の同位体やその他の性質を区別するために利用される。放射能を持つ核種を放射性核種、そうではない安定した核種を安定核種と呼ぶ。.

モル質量と核種 · 元素と核種 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

モル質量と水 · 元素と水 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

モル質量と水素 · 元素と水素 · 続きを見る »

上記のリストは以下の質問に答えます

モル質量と元素の間の比較

元素が322を有しているモル質量は、110の関係を有しています。 彼らは一般的な29で持っているように、ジャカード指数は6.71%です = 29 / (110 + 322)。

参考文献

この記事では、モル質量と元素との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »