ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ベンゼンと炭化水素

ショートカット: 違い類似点ジャカード類似性係数参考文献

ベンゼンと炭化水素の違い

ベンゼン vs. 炭化水素

ベンゼン (benzene) は分子式 C6H6、分子量 78.11 の最も単純な芳香族炭化水素である。原油に含まれており、石油化学における基礎的化合物の一つである。分野によっては慣用としてドイツ語 (Benzol:ベンツォール) 風にベンゾールと呼ぶことがある。ベンジン(benzine)とはまったく別の物質であるが、英語では同音異綴語である。. 炭化水素(たんかすいそ、hydrocarbon)は炭素原子と水素原子だけでできた化合物の総称である。その分子構造により鎖式炭化水素と環式炭化水素に大別され、更に飽和炭化水素、不飽和炭化水素、脂環式炭化水素、芳香族炭化水素などと細分化される 金沢大学教育学部附属高等学校 化学 Ib 学習テキスト。炭化水素で最も構造の簡単なものはメタンである。 また、石油や天然ガスの主成分は炭化水素やその混合物であり、石油化学工業の原料として今日の社会基盤を支える資源として欠くべからざる物である。.

ベンゼンと炭化水素間の類似点

ベンゼンと炭化水素は(ユニオンペディアに)共通で23ものを持っています: 単結合大気汚染不完全燃焼一酸化炭素二重結合化学式分子量アルカンアルケンガソリンコールタール石炭石油石油化学火山第二次世界大戦炭素芳香族化合物芳香族炭化水素触媒水素混成軌道溶媒

単結合

共有結合における単結合は通常、σ結合(シグマ結合)と呼ばれる結合でできている。 詳しい議論には、量子化学の知識が必要である。.

ベンゼンと単結合 · 単結合と炭化水素 · 続きを見る »

大気汚染

モッグに覆われた都市(台湾) 煙を吐き出す火力発電所 大気汚染(たいき おせん)とは、大気中の微粒子や有害な気体成分が増加して、人の健康や環境に悪影響をもたらすこと。人間の経済的・社会的な活動が主な原因である。自然に発生する火山噴火や砂嵐、山火事なども原因となるが、自然由来のものは大気汚染に含めない場合がある『気候学・気象学辞典』、300-301頁「大気汚染」、河村武『気象と地球の環境科学』、§8、99-111頁。.

ベンゼンと大気汚染 · 大気汚染と炭化水素 · 続きを見る »

不完全燃焼

不完全燃焼(ふかんぜんねんしょう、英語:incomplete combustion)とは、物質が酸素不足の状態で燃焼すること。大量のすす(黒煙)や一酸化炭素が生じる。転じて、人々が行う物事(スポーツや仕事など)が思うような結果が得られずに燻る様をいう。 自動車(特に大型トラックやバスなどのディーゼルエンジン車)などでは、発進時に思い切りアクセルペダルを踏み込んだ場合や高地で発生しやすく、加速が鈍くなる。その一方、木炭自動車では一酸化炭素を主成分とする関係で、不完全燃焼を起こす必要が生じる。.

ベンゼンと不完全燃焼 · 不完全燃焼と炭化水素 · 続きを見る »

一酸化炭素

一酸化炭素(いっさんかたんそ、carbon monoxide)は、炭素の酸化物の1種であり、常温・常圧で無色・無臭・可燃性の気体である。一酸化炭素中毒の原因となる。化学式は CO と表される。.

ベンゼンと一酸化炭素 · 一酸化炭素と炭化水素 · 続きを見る »

二重結合

二重結合(にじゅうけつごう、double bond)は、通常2つの代わりに4つの結合電子が関与する、2元素間の化学結合である。最も一般的な二重結合は、2炭素原子間のものでアルケンで見られる。2つの異なる元素間の二重結合には多くの種類が存在する。例えばカルボニル基は炭素原子と酸素原子間の二重結合を含む。その他の一般的な二重結合は、アゾ化合物 (N.

ベンゼンと二重結合 · 二重結合と炭化水素 · 続きを見る »

化学式

化学式(かがくしき、chemical formula)とは、化学物質を元素の構成で表現する表記法である。分子からなる物質を表す化学式を分子式(ぶんししき、molecular formula)、イオン物質を表す化学式をイオン式(イオンしき、ionic formula)と呼ぶことがある。化学式と呼ぶべき場面においても、分子式と言い回される場合は多い。 化学式が利用される場面としては、物質の属性情報としてそれに関連付けて利用される場合と、化学反応式の一部として物質を表すために利用される場合とがある。.

ベンゼンと化学式 · 化学式と炭化水素 · 続きを見る »

分子量

分子量(ぶんしりょう、)または相対分子質量(そうたいぶんししつりょう、)とは、物質1分子の質量の統一原子質量単位(静止して基底状態にある自由な炭素12 (12C) 原子の質量の1/12)に対する比であり、分子中に含まれる原子量の総和に等しい。 本来、核種組成の値によって変化する無名数である。しかし、特に断らない限り、天然の核種組成を持つと了解され、その場合には、構成元素の天然の核種組成に基づいた相対原子質量(原子量)を用いて算出される。.

ベンゼンと分子量 · 分子量と炭化水素 · 続きを見る »

アルカン

アルカン(、)とは、一般式 で表される鎖式飽和炭化水素である。メタン系炭化水素、パラフィン系炭化水素や脂肪族化合物McMurry(2004)、p.39。とも呼ばれる。炭素数が大きいものはパラフィンとも呼ばれる。アルカンが置換基となった場合、一価の置換基をアルキル基、二価の置換基をアルキレン基と呼ぶ。環状の飽和炭化水素はシクロアルカンと呼ばれる。 IUPACの定義によれば、正式には、環状のもの(シクロアルカン)はアルカンに含まれない。しかし両者の性質がよく似ていることや言葉の逐語訳から、シクロアルカンを「環状アルカン」と称し、本来の意味でのアルカンを「非環状アルカン」と呼ぶことがある。結果的に、あたかも飽和炭化水素全体の別称であるかのように「アルカン」の語が用いられることもあるが、不適切である。 主に石油に含まれ、分留によって取り出される。個別の物理的性質などについてはデータページを参照。生物由来の脂肪油に対して、石油由来のアルカン類を鉱油(mineral oil)と呼ぶ。.

アルカンとベンゼン · アルカンと炭化水素 · 続きを見る »

アルケン

アルケン(、)は化学式 CnH2n (n≧2) で表される有機化合物で、C-C間の二重結合を1つ持つ。すなわち、不飽和炭化水素の一種。エチレン系炭化水素、オレフィン (olefin)、オレフィン系炭化水素とも呼ばれる。C-C二重結合を構成している2つπ結合1つとσ結合1つから成り立っており、このうちπ結合の結合エネルギーはC-H結合のものよりも小さく、付加反応が起こりやすい。例えばエテン(エチレン)と塩素の混合物に熱を与えると 1,2-ジクロロエタンが生成する。.

アルケンとベンゼン · アルケンと炭化水素 · 続きを見る »

ガソリン

リン 金属製ガソリン携行缶20 L 自動車用レギュラーガソリン ガソリン(瓦斯倫、ペトロ petrol、米:gasoline)とは、石油製品の一種で、沸点が摂氏30度から220度の範囲にある石油製品(および中間製品)の総称。この名称は、「gas(ガス)」とアルコールやフェノール類の接尾辞であるolと不飽和炭化水素の接尾辞であるineに由来する。 ガソリンは代表的な液体燃料である。米国ではガスと呼ばれることが多く、燃料切れを意味するガス欠はこれに由来する。日本の法令などでは揮発油(きはつゆ)と呼ばれる場合がある。.

ガソリンとベンゼン · ガソリンと炭化水素 · 続きを見る »

コールタール

ールタール(coal tar)とは、コークスを製造する時にコークス炉で石炭を乾留して得られる副生成物の一つ。黒色の液体で芳香族化合物に独特の臭気(タール臭)を持つ。芳香族化合物を多量に含み、ナフタレン(5%–15%)、ベンゼン(0.3%–1%)、フェノール(0.5%–1.5%)、クレゾール、ペンゾaピレン(1%–3%)、フェナントレン(3%–8%)などが含まれている。 コールタールの2016年度日本国内生産量は 1,380,943 t 、工業消費量は 309,969 t である。.

コールタールとベンゼン · コールタールと炭化水素 · 続きを見る »

石炭

石炭(せきたん、英:coal)とは、古代(数億年前)の植物が完全に腐敗分解する前に地中に埋もれ、そこで長い期間地熱や地圧を受けて変質(石炭化)したことにより生成した物質の総称。見方を変えれば植物化石でもある。 石炭は古くから、産業革命以後20世紀初頭まで最重要の燃料として、また化学工業や都市ガスの原料として使われてきた。第一次世界大戦前後から、艦船の燃料が石炭の2倍のエネルギーを持つ石油に切り替わり始めた。戦間期から中東での油田開発が進み、第二次世界大戦後に大量の石油が採掘されて1バレル1ドルの時代を迎えると産業分野でも石油の導入が進み(エネルギー革命)、西側先進国で採掘条件の悪い坑内掘り炭鉱は廃れた。 しかし1970年代に二度の石油危機で石油がバレルあたり12ドルになると、産業燃料や発電燃料は再び石炭に戻ったが、日本国内で炭鉱が復活することは無かった。豪州の露天掘りなど、採掘条件の良い海外鉱山で機械化採炭された、安価な海外炭に切り替わっていたからである。海上荷動きも原油に次いで石炭と鉄鉱石が多く、30万トンの大型石炭船も就役している。 他の化石燃料である石油や天然ガスに比べて、燃焼した際の二酸化炭素 (CO2) 排出量が多く、地球温暖化の主な原因の一つとなっている。また、硫黄酸化物の排出も多い。.

ベンゼンと石炭 · 炭化水素と石炭 · 続きを見る »

石油

石油(せきゆ)とは、炭化水素を主成分として、ほかに少量の硫黄・酸素・窒素などさまざまな物質を含む液状の油で、鉱物資源の一種である。地下の油田から採掘後、ガス、水分、異物などを大まかに除去した精製前のものを特に原油(げんゆ)という。 原油の瓶詰め 石油タン.

ベンゼンと石油 · 炭化水素と石油 · 続きを見る »

石油化学

石油化学(せきゆかがく、英語:petrochemistry)または石油化学工業とは、石油、または天然ガスなどを原料として、合成繊維や合成樹脂などを作る化学工業の一分野である。生成物が燃料や潤滑用油など、より上流に位置する石油精製業に属している場合はここには含まない。.

ベンゼンと石油化学 · 炭化水素と石油化学 · 続きを見る »

火山

火山(かざん、)は、地殻の深部にあったマグマが地表または水中に噴出することによってできる、特徴的な地形をいう。文字通りの山だけでなく、カルデラのような凹地形も火山と呼ぶ。火山の地下にはマグマがあり、そこからマグマが上昇して地表に出る現象が噴火である。噴火には、様々な様式(タイプ)があり、火山噴出物の成分や火山噴出物の量によってもその様式は異なっている。 火山の噴火はしばしば人間社会に壊滅的な打撃を与えてきたため、記録や伝承に残されることが多い。 は、ローマ神話で火と冶金と鍛治の神ウルカヌス(ギリシア神話ではヘーパイストス)に由来し、16世紀のイタリア語で または と使われていたものが、ヨーロッパ諸国語に入った。このウルカヌス(英語読みではヴァルカン)は、イタリアのエトナ火山の下に冶金場をもつと信じられていた。シチリア島近くのヴルカーノ島の名も、これに由来する。日本で の訳として「火山」の語が広く用いられるようになったのは、明治以降である。.

ベンゼンと火山 · 火山と炭化水素 · 続きを見る »

第二次世界大戦

二次世界大戦(だいにじせかいたいせん、Zweiter Weltkrieg、World War II)は、1939年から1945年までの6年間、ドイツ、日本、イタリアの日独伊三国同盟を中心とする枢軸国陣営と、イギリス、ソビエト連邦、アメリカ 、などの連合国陣営との間で戦われた全世界的規模の巨大戦争。1939年9月のドイツ軍によるポーランド侵攻と続くソ連軍による侵攻、そして英仏からドイツへの宣戦布告はいずれもヨーロッパを戦場とした。その後1941年12月の日本とイギリス、アメリカ、オランダとの開戦によって、戦火は文字通り全世界に拡大し、人類史上最大の大戦争となった。.

ベンゼンと第二次世界大戦 · 炭化水素と第二次世界大戦 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

ベンゼンと炭素 · 炭化水素と炭素 · 続きを見る »

芳香族化合物

芳香族化合物(ほうこうぞくかごうぶつ、aromatic compounds)は、ベンゼンを代表とする環状不飽和有機化合物の一群。炭化水素のみで構成されたものを芳香族炭化水素 (aromatic hydrocarbon)、環構造に炭素以外の元素を含むものを複素芳香族化合物 (heteroaromatic compound) と呼ぶ。狭義には芳香族化合物は芳香族炭化水素と同義である。 19世紀ごろ知られていた芳香をもつ化合物の共通構造であったことから「芳香族」とよばれるようになった。したがって匂い(芳香)は芳香族の特性ではない。.

ベンゼンと芳香族化合物 · 炭化水素と芳香族化合物 · 続きを見る »

芳香族炭化水素

芳香族炭化水素(ほうこうぞくたんかすいそ、英語:aromatic hydrocarbons)あるいはアレーン (arene) は芳香族性を示す単環(MAH)あるいは複数の環(縮合環)から構成される炭化水素である。略号として AH が使用されることがある。芳香族炭化水素が置換基となった場合の呼称はアリール基 (aryl group) であり、Ar− と略される。具体的にはフェニル基、ナフチル基などがアリール基の代表例である。 芳香族化合物 (aromatic compounds) と同義に使用されることがあるが、広義の芳香族化合物には複素芳香族化合物も含まれる。 芳香族炭化水素は、一重結合と二重結合が交互に並び、電子が非局在化した6つの炭素原子から成る単環あるいは複数の平面環をユニットとして構成されている。最も構造が単純な芳香族炭化水素はベンゼンであり、ベンゼン環として知られている6つの炭素からなる環状化合物である。 その構造が不明であった遠い昔、強烈な臭気を持つものが多かったので、芳香族炭化水素はそのような名前がつけられた。.

ベンゼンと芳香族炭化水素 · 炭化水素と芳香族炭化水素 · 続きを見る »

触媒

触媒(しょくばい)とは、特定の化学反応の反応速度を速める物質で、自身は反応の前後で変化しないものをいう。また、反応によって消費されても、反応の完了と同時に再生し、変化していないように見えるものも触媒とされる。「触媒」という用語は明治の化学者が英語の catalyser、ドイツ語の Katalysator を翻訳したものである。今日では、触媒は英語では catalyst、触媒の作用を catalysis という。 今日では反応の種類に応じて多くの種類の触媒が開発されている。特に化学工業や有機化学では欠くことができない。また、生物にとっては酵素が重要な触媒としてはたらいている。.

ベンゼンと触媒 · 炭化水素と触媒 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

ベンゼンと水素 · 水素と炭化水素 · 続きを見る »

混成軌道

4つの ''sp''3混成軌道 3つの ''sp''2混成軌道 化学において、混成軌道(こんせいきどう、Hybrid orbital)は、原子価結合法において化学結合を形成する電子対を作るのに適した軌道関数(オービタル)である(これを原子価状態と呼ぶ)。混成(hybridization)は一つの原子上の原子軌道を混合する(線型結合をとる)概念であり、作られた新たな混成軌道は構成要素の原子軌道とは異なるエネルギーや形状等を持つ。混成軌道の概念は、第2周期以降の原子を含む分子の幾何構造と原子の結合の性質の説明に非常に有用である。 原子価殻電子対反発則(VSEPR則)と共に教えられることがあるものの、原子価結合および混成はVSEPRモデルとは実際に関係がない。 分子の構造は各原子と化学結合から成り立っているので、化学結合の構造が原子核と電子との量子力学でどのように解釈されるかは分子の挙動を理論的に解明していく上で基盤となる。化学結合を量子力学で扱う方法には主に、分子軌道法と原子価結合法とがある。前者は分子の原子核と電子との全体を一括して取り扱う方法であるのに対して、原子価軌道法では分子を、まず化学結合のところで切り分けた原子価状態と呼ばれる個々の原子と価電子の状態を想定する。次の段階として、分子の全体像を原子価状態を組み立てることで明らかにしてゆく。具体的には個々の原子の軌道や混成軌道をσ結合やπ結合の概念を使って組み上げることで、共有結合で構成された分子像を説明していくことになる。それゆえに、原子軌道から原子価状態を説明付ける際に利用する混成軌道の概念は原子価軌道法の根本に位置すると考えられる。 原子価結合法と分子構造.

ベンゼンと混成軌道 · 混成軌道と炭化水素 · 続きを見る »

溶媒

水は最も身近で代表的な溶媒である。 溶媒(ようばい、solvent)は、他の物質を溶かす物質の呼称。工業分野では溶剤(ようざい)と呼ばれることも多い。最も一般的に使用される水のほか、アルコールやアセトン、ヘキサンのような有機物も多く用いられ、これらは特に有機溶媒(有機溶剤)と呼ばれる。 溶媒に溶かされるものを溶質(solute)といい、溶媒と溶質を合わせて溶液(solution)という。溶媒としては、目的とする物質を良く溶かすこと(溶解度が高い)、化学的に安定で溶質と化学反応しないことが最も重要である。目的によっては沸点が低く除去しやすいことや、可燃性や毒性、環境への影響などを含めた安全性も重視される。水以外の多くの溶媒は、きわめて燃えやすく、毒性の強い蒸気を出す。また、化学反応では、溶媒の種類によって反応の進み方が著しく異なることが知られている(溶媒和効果)。 一般的に溶媒として扱われる物質は常温常圧では無色の液体であり、独特の臭気を持つものも多い。有機溶媒は一般用途としてドライクリーニング(テトラクロロエチレン)、シンナー(トルエン、テルピン油)、マニキュア除去液や接着剤(アセトン、酢酸メチル、酢酸エチル)、染み抜き(ヘキサン、石油エーテル)、合成洗剤(オレンジオイル)、香水(エタノール)あるいは化学合成や樹脂製品の加工に使用される。また抽出に用いる。.

ベンゼンと溶媒 · 溶媒と炭化水素 · 続きを見る »

上記のリストは以下の質問に答えます

ベンゼンと炭化水素の間の比較

炭化水素が100を有しているベンゼンは、172の関係を有しています。 彼らは一般的な23で持っているように、ジャカード指数は8.46%です = 23 / (172 + 100)。

参考文献

この記事では、ベンゼンと炭化水素との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »