ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ヘンリー・キャヴェンディッシュと水

ショートカット: 違い類似点ジャカード類似性係数参考文献

ヘンリー・キャヴェンディッシュと水の違い

ヘンリー・キャヴェンディッシュ vs. 水

ヘンリー・キャヴェンディッシュ(Henry Cavendish, 1731年10月10日 – 1810年2月24日)は、イギリスの化学者・物理学者である。貴族の家に生まれ育ち、ケンブリッジ大学で学んだ。寡黙で人間嫌いな性格であったことが知られている。遺産による豊富な資金を背景に研究に打ち込み、多くの成果を残した。 金属と強酸の反応によって水素が発生することを見出した。電気火花を使った水素と酸素の反応により水が生成することを発見し、水が化合物であることを示した。この結果をフロギストン説に基づいて解釈している。さらに水素と窒素の電気火花による反応で硝酸が得られ、空気中からこれらの方法で酸素と窒素を取り除くと、のちにアルゴンと呼ばれる物質が容器内に残ることを示した。 彼の死後には、生前に発表されたもののほかに、未公開の実験記録がたくさん見つかっている。その中には、ジョン・ドルトンやジャック・シャルルによっても研究された気体の蒸気圧や熱膨張に関するものや、クーロンの法則およびオームの法則といった電気に関するものが含まれる。これらの結果はのちに同様の実験をした化学者にも高く評価された。(ただしこれらは、未公開であったがゆえに、科学界への影響はほとんどなかった。「もし生前に公開されていたら」と、ひどく惜しまれた。) ハンフリー・デービーはキャヴェンディッシュの死に際し、彼をアイザック・ニュートンに比して評価した。19世紀には彼の遺稿や実験結果が出版され、彼の名を冠したキャヴェンディッシュ研究所が設立されている。. 水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

ヘンリー・キャヴェンディッシュと水間の類似点

ヘンリー・キャヴェンディッシュと水は(ユニオンペディアに)共通で18ものを持っています: 密度丸善雄松堂化合物化学ライナス・ポーリングフロギストン説分子クーロンの法則ジョン・ドルトンジョセフ・ルイ・ゲイ=リュサックジョゼフ・プリーストリー科学者酸素比重水素気体温度

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

ヘンリー・キャヴェンディッシュと密度 · 密度と水 · 続きを見る »

丸善雄松堂

丸善雄松堂株式会社(まるぜんゆうしょうどう、)は、日本の大手書店、出版社、専門商社。文化施設の建築・内装、図書館業務のアウトソーシング等も行い、幅広い業務を手がけている。大日本印刷の子会社である丸善CHIホールディングスの完全子会社である。 なお、かつての丸善石油(後のコスモ石油)、「チーかま」など珍味メーカーの丸善、業務用厨房機器メーカーのマルゼン、エアソフトガンメーカーのマルゼンとは無関係である。 本店は東京都中央区日本橋二丁目に、本社事務所は港区海岸一丁目にある。.

ヘンリー・キャヴェンディッシュと丸善雄松堂 · 丸善雄松堂と水 · 続きを見る »

化合物

化合物(かごうぶつ、chemical compound)とは、化学反応を経て2種類以上の元素の単体に生成することができる物質であり岩波理化学辞典(4版)、p.227、【化合物】、言い換えると2種類以上の元素が化学結合で結びついた純物質とも言える。例えば、水 (H2O) は水素原子 (H) 2個と酸素原子 (O) 1個からなる化合物である。水が水素や酸素とは全く異なる性質を持っているように、一般的に、化合物の性質は、含まれている元素の単体の性質とは全く別のものである。 同じ化合物であれば、成分元素の質量比はつねに一定であり、これを定比例の法則と言い株式会社 Z会 理科アドバンスト 考える理科 化学入門、混合物と区別される。ただし中には結晶の不完全性から生じる岩波理化学辞典(4版)、p.1109、【不定比化合物】不定比化合物のように各元素の比が自然数にならないが安定した物質もあり、これらも化合物のひとつに含める。 化合物は有機化合物か無機化合物のいずれかに分類されるが、その領域は不明瞭な部分がある。.

ヘンリー・キャヴェンディッシュと化合物 · 化合物と水 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

ヘンリー・キャヴェンディッシュと化学 · 化学と水 · 続きを見る »

ライナス・ポーリング

ライナス・カール・ポーリング(Linus Carl Pauling、1901年2月28日 - 1994年8月19日)は、アメリカ合衆国の量子化学者、生化学者。彼自身は結晶学者、分子生物学者、医療研究者とも自称していた。 ポーリングは20世紀における最も重要な化学者の一人として広く認められている。量子力学を化学に応用した先駆者であり、化学結合の本性を記述した業績により1954年にノーベル化学賞を受賞した。また、結晶構造決定やタンパク質構造決定に重要な業績を残し、分子生物学の草分けの一人とも考えられている。ワトソンとクリックが1953年にDNAの生体内構造である「二重らせん構造」を発表する前に、ポーリングはほぼそれに近い「三重らせん構造」を提唱していた。多方面に渡る研究者としても有名で、無機化学、有機化学、金属学、免疫学、麻酔学、心理学、弁論術、放射性崩壊、核戦争のもたらす影響などの分野でも多大な貢献があった。 1962年、地上核実験に対する反対運動の業績によりノーベル平和賞を受賞した。ポーリングは単独でノーベル賞を複数回受賞した数少ない人物の一人である。後年、大量のビタミンCや他の栄養素を摂取する健康法を提唱し、更にこの着想を一般化させて分子矯正医学を提唱、それを中心とした数冊の本を著してこれらの概念、分析、研究、及び洞察を一般社会に紹介した。.

ヘンリー・キャヴェンディッシュとライナス・ポーリング · ライナス・ポーリングと水 · 続きを見る »

フロギストン説

フロギストン説(フロギストンせつ、phlogiston theory 、Phlogistontheorie )とは、『「燃焼」はフロギストンという物質の放出の過程である』という科学史上の一つの考え方である。フロギストンは燃素(ねんそ)と和訳される事があり、「燃素説」とも呼ばれる。この説そのものは決して非科学な考察から生まれたものでなく、その当時知られていた科学的知見を元に提唱された学説であるが、後により現象を有効に説明する酸素説が提唱されたことで、忘れ去られていった。.

フロギストン説とヘンリー・キャヴェンディッシュ · フロギストン説と水 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

ヘンリー・キャヴェンディッシュと分子 · 分子と水 · 続きを見る »

クーロンの法則

ーロンの法則(クーロンのほうそく、Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。 ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられ、シャルル・ド・クーロンが1785年に法則として再発見した。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。 また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。.

クーロンの法則とヘンリー・キャヴェンディッシュ · クーロンの法則と水 · 続きを見る »

ジョン・ドルトン

ョン・ドルトン(John Dalton, 1766年9月6日 - 1844年7月27日)は、イギリスの化学者、物理学者ならびに気象学者。原子説を提唱したことで知られる。また、自分自身と親族の色覚を研究し、自らが先天色覚異常であることを発見したことによって、色覚異常を意味する「ドルトニズム (Daltonism)」の語源となった。.

ジョン・ドルトンとヘンリー・キャヴェンディッシュ · ジョン・ドルトンと水 · 続きを見る »

ジョセフ・ルイ・ゲイ=リュサック

ョセフ・ルイ・ゲイ=リュサック(ゲーリュサックなどとも、Joseph Louis Gay-Lussac、1778年12月6日 - 1850年5月9日)は、フランスの化学者 、物理学者である。気体の体積と温度の関係を示すシャルルの法則の発見者の一人である。アルコールと水の混合についても研究し、アルコール度数のことを「ゲイ=リュサック度数」と呼ぶ国も多い。弟子に有機化学の確立に貢献したユストゥス・フォン・リービッヒがいる。 なお、フランス語でのJoseph Louis Gay-Lussacの発音を日本語に音写すれば、「ジョゼフ・ルイ・ゲ=リュサック」が原音に最も近いといえるだろう。.

ジョセフ・ルイ・ゲイ=リュサックとヘンリー・キャヴェンディッシュ · ジョセフ・ルイ・ゲイ=リュサックと水 · 続きを見る »

ジョゼフ・プリーストリー

ョゼフ・プリーストリー(Joseph Priestley, 1733年3月13日(旧暦) - 1804年2月6日)は、18世紀イギリスの自然哲学者、教育者、神学者、非国教徒の聖職者、政治哲学者で、150以上の著作を出版した。気相の酸素の単離に成功したことから一般に酸素の発見者とされているが、カール・ヴィルヘルム・シェーレとアントワーヌ・ラヴォアジエも酸素の発見者とされることがある。その生涯における主な科学的業績として、炭酸水の発明、電気についての著作、いくつかの気体(アンモニア、塩化水素、一酸化窒素、二酸化窒素、二酸化硫黄)の発見などがあるが、最大の功績は「脱フロギストン空気」(酸素)の命名である。1774年夏、酸化第二水銀を加熱することによって、得られる気体が燃焼を激しくすることを発見し、その気体の中でネズミが長生きすることを発見した。当時フロギストン(燃素)説の時代であったので、「脱フロギストン空気」と考え、同年ラヴォアジエに話した。この気体が酸素である。この実験を追実験することによってラヴォアジエは燃焼の化学的プロセスを解明することになった。しかしプリーストリー自身はフロギストン説に固執し、化学革命を拒否したため、科学界で孤立することになった。 プリーストリーにとって科学は神学に不可欠な要素であり、一貫して啓蒙合理主義とキリスト教の融合を心がけていた。哲学的著作では有神論、唯物論、決定論の融合を試み、それを "audacious and original"(大胆で独創的)と称した。彼は自然界を正しく理解することで人類の進歩が促進され、キリスト教的千年王国が到来すると信じていた。言論の自由を強く信じ、宗教的寛容と非国教徒の平等な権利を主張、イングランドにおけるユニテリアン主義の確立に関与した。物議を醸す著作『誤りと迷信という古い建物を爆破して』を出版しフランス革命支持を表明したことで、政治的疑惑を引き起こした。国教会に扇動された群衆が彼の家と教会に押し寄せ火を放ったため、1791年にはロンドンに逃げ、さらにアメリカ合衆国への移住を余儀なくされた。晩年の10年間はペンシルベニア州ノーサンバーランド郡で過ごした。 生涯を通じて学者であり教育者だった。教育学における貢献として、英文法に関する重要な著作を出版。歴史についての本では初期の年表を記載し、後世に影響を与えた。こういった教育目的の著作が最も出版部数が多かった。しかし、後々に長く影響を与えたのは哲学的著作である。影響を受けた哲学者としてジェレミ・ベンサム、ジョン・スチュアート・ミル、ハーバート・スペンサーらがおり、彼らは一般に功利主義者と呼ばれている。.

ジョゼフ・プリーストリーとヘンリー・キャヴェンディッシュ · ジョゼフ・プリーストリーと水 · 続きを見る »

科学者

科学者(かがくしゃ、scientist)とは、科学を専門とする人・学者のことである。特に自然科学を研究する人をこう呼ぶ傾向がある。.

ヘンリー・キャヴェンディッシュと科学者 · 水と科学者 · 続きを見る »

熱の流れは様々な方法で作ることができる。 熱(ねつ、heat)とは、慣用的には、肌で触れてわかる熱さや冷たさといった感覚である温度の元となるエネルギーという概念を指していると考えられているが、物理学では熱と温度は明確に区別される概念である。本項目においては主に物理学的な「熱」の概念について述べる。 熱力学における熱とは、1つの物体や系から別の物体や系への温度接触によるエネルギー伝達の過程であり、ある物体に熱力学的な仕事以外でその物体に伝達されたエネルギーと定義される。 関連する内部エネルギーという用語は、物体の温度を上げることで増加するエネルギーにほぼ相当する。熱は正確には高温物体から低温物体へエネルギーが伝達する過程が「熱」として認識される。 物体間のエネルギー伝達は、放射、熱伝導、対流に分類される。温度は熱平衡状態にある原子や分子などの乱雑な並進運動の運動エネルギーの平均値であり、熱伝達を生じさせる性質をもつ。物体(あるいは物体のある部分)から他に熱によってエネルギーが伝達されるのは、それらの間に温度差がある場合だけである(熱力学第二法則)。同じまたは高い温度の物体へ熱によってエネルギーを伝達するには、ヒートポンプのような機械力を使うか、鏡やレンズで放射を集中させてエネルギー密度を高めなければならない(熱力学第二法則)。.

ヘンリー・キャヴェンディッシュと熱 · 水と熱 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

ヘンリー・キャヴェンディッシュと酸素 · 水と酸素 · 続きを見る »

比重

比重(ひじゅう)とは、ある物質の密度(単位体積当たり質量)と、基準となる標準物質の密度との比である。通常、固体及び液体については水、気体については、同温度、同圧力での空気を基準とする。.

ヘンリー・キャヴェンディッシュと比重 · 比重と水 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

ヘンリー・キャヴェンディッシュと水素 · 水と水素 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

ヘンリー・キャヴェンディッシュと気体 · 気体と水 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

ヘンリー・キャヴェンディッシュと温度 · 水と温度 · 続きを見る »

上記のリストは以下の質問に答えます

ヘンリー・キャヴェンディッシュと水の間の比較

水が441を有しているヘンリー・キャヴェンディッシュは、87の関係を有しています。 彼らは一般的な18で持っているように、ジャカード指数は3.41%です = 18 / (87 + 441)。

参考文献

この記事では、ヘンリー・キャヴェンディッシュと水との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »