ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ピン止め効果と磁石

ショートカット: 違い類似点ジャカード類似性係数参考文献

ピン止め効果と磁石の違い

ピン止め効果 vs. 磁石

ピン止め効果(ピンどめこうか、flux pinning、磁束ピン止めともいう)とは、磁束が第二種超伝導体の内部にあるひずみや不純物などの常伝導部分に捕らえられ、ピンで止めたように動かなくなる現象。第二種超伝導体において、外部磁場が臨界磁場Hc1とHc2の間にあるときに起こる。. 磁石(じしゃく、、マグネット)は、二つの極(磁極)を持ち、双極性の磁場を発生させる源となる物体のこと。鉄などの強磁性体を引き寄せる性質を持つ。磁石同士を近づけると、異なる極は引き合い、同じ極は反発しあう。.

ピン止め効果と磁石間の類似点

ピン止め効果と磁石は(ユニオンペディアに)共通で8ものを持っています: マイスナー効果磁場磁束超伝導臨界磁場電磁誘導電気抵抗電流

マイスナー効果

マイスナー効果(マイスナーこうか Meissner effect, Meißner Ochsenfeld Effekt)は、超伝導体が持つ性質の1つであり、遮蔽電流(永久電流)の磁場が外部磁場に重なり合って超伝導体内部の正味の磁束密度をゼロにする現象である。マイスナー―オクセンフェルト効果 、あるいは完全反磁性とも呼ばれる。.

ピン止め効果とマイスナー効果 · マイスナー効果と磁石 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

ピン止め効果と磁場 · 磁場と磁石 · 続きを見る »

磁束

磁束(じそく、英語:magnetic flux、磁気誘導束とも言う)とは、その場における磁界の強さと方向を、1(Wb)を1本とした線の束で表したものである。.

ピン止め効果と磁束 · 磁束と磁石 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

ピン止め効果と超伝導 · 磁石と超伝導 · 続きを見る »

臨界磁場

臨界磁場(りんかいじば、Hc)とは、超伝導状態を破壊してしまう磁場の値のこと。外部からの磁場が臨界磁場より強くなければ、超伝導体はマイスナー効果により磁場を排除するが、磁場が臨界磁場を超えると超伝導状態ではなくなってしまう。磁場の反応の違いから超伝導体には第一種超伝導体と第二種超伝導体の二種類がある。第二種超伝導体はHc1とHc2の2つの臨界磁場を持つ。これからは以下の項目で述べる。.

ピン止め効果と臨界磁場 · 磁石と臨界磁場 · 続きを見る »

電磁誘導

電磁誘導(でんじゆうどう、)とは、磁束が変動する環境下に存在する導体に電位差(電圧)が生じる現象である。また、このとき発生した電流を誘導電流という。 一般には、マイケル・ファラデーによって1831年に誘導現象が発見されたとされるが、先にジョセフ・ヘンリーに発見されている。また、が1829年に行った研究によって、既に予想されていたとも言われる。 ファラデーは、閉じた経路に発生する起電力が、その経路によって囲われた任意の面を通過する磁束の変化率に比例することを発見した。すなわち、これは導体によって囲われた面を通過する磁束が変化した時、すべての閉回路には電流が流れることを意味する。これは、磁束の強さそれ自体が変化した場合であっても導体が移動した場合であっても適用される。 電磁誘導は、発電機、誘導電動機、変圧器など多くの電気機器の動作原理となっている。.

ピン止め効果と電磁誘導 · 磁石と電磁誘導 · 続きを見る »

電気抵抗

電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

ピン止め効果と電気抵抗 · 磁石と電気抵抗 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

ピン止め効果と電流 · 磁石と電流 · 続きを見る »

上記のリストは以下の質問に答えます

ピン止め効果と磁石の間の比較

磁石が183を有しているピン止め効果は、17の関係を有しています。 彼らは一般的な8で持っているように、ジャカード指数は4.00%です = 8 / (17 + 183)。

参考文献

この記事では、ピン止め効果と磁石との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »