ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

バーチ・スウィンナートン=ダイアー予想と標準的高さ

ショートカット: 違い類似点ジャカード類似性係数参考文献

バーチ・スウィンナートン=ダイアー予想と標準的高さの違い

バーチ・スウィンナートン=ダイアー予想 vs. 標準的高さ

数学において、バーチ・スウィンナートン=ダイアー予想 (Birch and Swinnerton-Dyer conjecture) は数論の分野における未解決問題である。略してBSD予想 (BSD conjecture) と呼ばれる。それは最もチャレンジングな数学の問題の 1 つであると広く認められている。予想はクレイ数学研究所によってリストされた 7 つのミレニアム懸賞問題の 1 つとして選ばれ、最初の正しい証明に対して100万ドルの懸賞金が約束されている。予想は機械計算の助けを借りて1960年代の前半に予想を立てた数学者ブライアン・バーチ (Bryan Birch) とピーター・スウィンナートン=ダイアー (Peter Swinnerton-Dyer) にちなんで名づけられている。、予想の特別な場合のみ正しいと証明されている。 予想は代数体 K 上の楕円曲線 E に伴う数論的データを E の ハッセ・ヴェイユの ''L''-関数 L(E, s) の s. 数論では、ネロン・テイトの高さ(Néron–Tate height)(もしくは、標準的高さ (canonical height) ともいう)は、大域体上に定義されたアーベル多様体の有理点の上の二次形式である。この命名は、(André Néron)とジョン・テイト(John Tate)にちなんでいる。.

バーチ・スウィンナートン=ダイアー予想と標準的高さ間の類似点

バーチ・スウィンナートン=ダイアー予想と標準的高さは(ユニオンペディアに)共通で6ものを持っています: 二次形式シュプリンガー・サイエンス・アンド・ビジネス・メディアジョン・テイト虚数乗法楕円曲線有理点

二次形式

数学における二次形式(にじけいしき、quadratic form) は、いくつかの変数に関する次数が 2 の斉次多項式である。たとえば は変数 x, y に関する二次形式である。 二次形式は数学のいろいろな分野(数論、線型代数学、群論(直交群)、微分幾何学(リーマン計量)、微分位相幾何学(四次元多様体の交叉形式)、リー理論(キリング形式)など)で中心的な位置を占める概念である。.

バーチ・スウィンナートン=ダイアー予想と二次形式 · 二次形式と標準的高さ · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

シュプリンガー・サイエンス・アンド・ビジネス・メディアとバーチ・スウィンナートン=ダイアー予想 · シュプリンガー・サイエンス・アンド・ビジネス・メディアと標準的高さ · 続きを見る »

ジョン・テイト

ョン・テイト(John Torrence Tate, 1925年3月13日 - )は、アメリカの数学者。 Emil Artinのもとで1950年プリンストン大学で学位を取得。長年ハーバード大学に勤め、現在はテキサス大学オースティン校教授。ミネソタ州ミネアポリス生まれ。 現在の研究範囲は代数的整数論、類体論、Galois Cohomology、Galois表現、L関数とその特殊値、Modular形式、楕円曲線、Abel多様体.

ジョン・テイトとバーチ・スウィンナートン=ダイアー予想 · ジョン・テイトと標準的高さ · 続きを見る »

虚数乗法

虚数乗法(complex multiplication)とは、通常よりも大きな対称性をもつ楕円曲線の理論のことをいう。別のいいかたをすれば、(period lattice)がガウス整数の格子であったり、アイゼンシュタイン整数の格子であったりするような、余剰な対称性を持つ楕円函数の理論である。楕円曲線の高次元化であるアーベル多様体についても同様に大きな対称性をもつ場合があり、これらを扱うのが虚数乗法論である。 特殊関数の理論として、そのような楕円函数や多変数複素解析函数のアーベル函数は、大きな対称性をもつことからその関数が多くの等式をみたすことがいえる。特別な点では具体的に計算可能な特殊値を持つ。また虚数乗法は代数的整数論の中心的なテーマであり、円分体の理論をより広く拡張する事を可能にする。 虚数乗法は、虚二次体の類体における相互法則、主イデアル定理、分岐の様子を、楕円函数や楕円曲線のことばで具体的に書き表すことを可能とする。ダフィット・ヒルベルト(David Hilbert)は、楕円曲線の虚数乗法論は数学のみならず、すべての科学の中の最も美しい分野であると言っている。.

バーチ・スウィンナートン=ダイアー予想と虚数乗法 · 標準的高さと虚数乗法 · 続きを見る »

楕円曲線

数学における楕円曲線(だえんきょくせん、elliptic curve)とは種数 の非特異な射影代数曲線、さらに一般的には、特定の基点 を持つ種数 の代数曲線を言う。 楕円曲線上の点に対し、積に関して、先述の点 を単位元とする(必ず可換な)群をなすように、積を代数的に定義することができる。すなわち楕円曲線はアーベル多様体である。 楕円曲線は、代数幾何学的には、射影平面 の中の三次の平面代数曲線として見ることもできる。より正確には、射影平面上、楕円曲線はヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形 により定義された非特異な平面代数曲線に双有理同値である(有理変換によってそのような曲線に変換される)。そしてこの形にあらわされているとき、 は実は射影平面の「無限遠点」である。 また、の標数が でも でもないとき、楕円曲線は、アフィン平面上次の形の式により定義された非特異な平面代数曲線に双有理同値である。 非特異であるとは、グラフが尖点を持ったり、自分自身と交叉したりはしないということである。この形の方程式もヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形という。係数体の標数が や のとき、上の式は全ての非特異を表せるほど一般ではない(詳細な定義は以下を参照)。 が重根を持たない三次多項式として、 とすると、種数 の非特異平面曲線を得るので、これは楕円曲線である。が次数 でとすると、これも種数 の平面曲線となるが、しかし、単位元を自然に選び出すことができない。さらに一般的には、単位元として働く有理点を少なくとも一つ持つような種数 の代数曲線を楕円曲線と呼ぶ。例えば、三次元射影空間へ埋め込まれた二つの二次曲面の交叉は楕円曲線である。 楕円関数論を使い、複素数上で定義された楕円曲線はトーラスのへの埋め込みに対応することを示すことができる。トーラスもアーベル群で、実はこの対応は群同型かつ位相的に同相にもなっている。したがって、位相的には複素楕円曲線はトーラスである。 楕円曲線は、数論で特に重要で、現在研究されている主要な分野の一つである。例えば、アンドリュー・ワイルズにより(リチャード・テイラーの支援を得て)証明されたフェルマーの最終定理で重要な役割を持っている(モジュラー性定理とフェルマーの最終定理への応用を参照)。また、楕円曲線は、楕円暗号(ECC) や素因数分解への応用が見つかっている。 楕円曲線は、楕円ではないことに注意すべきである。「楕円」ということばの由来については楕円積分、楕円関数を参照。 このように、楕円曲線は次のように見なすことができる。.

バーチ・スウィンナートン=ダイアー予想と楕円曲線 · 楕円曲線と標準的高さ · 続きを見る »

有理点

数論において有理点(ゆうりてん、rational point)とは、各座標の値が全て有理数であるような空間の点を言う。 例えば、点 (3, −67/4) は 3 も −67/4 も有理数であるため、2次元空間内の有理点である。有理点の特別な場合は、(integer point)、つまり、その座標が全て整数の点である。例えば、(1, −5, 0) は 3次元空間内の整数点である。より一般的に K を任意の体とするとき、K-有理点は点の各々の座標が体 K に属するような点と定義される。K-有理点に対応する特別な場合は K-整数点、すなわち各座標が(数体) K 内の代数的整数の環の元である場合である。.

バーチ・スウィンナートン=ダイアー予想と有理点 · 有理点と標準的高さ · 続きを見る »

上記のリストは以下の質問に答えます

バーチ・スウィンナートン=ダイアー予想と標準的高さの間の比較

標準的高さが17を有しているバーチ・スウィンナートン=ダイアー予想は、48の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は9.23%です = 6 / (48 + 17)。

参考文献

この記事では、バーチ・スウィンナートン=ダイアー予想と標準的高さとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »