ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

チャーン・サイモンズ理論と接続形式

ショートカット: 違い類似点ジャカード類似性係数参考文献

チャーン・サイモンズ理論と接続形式の違い

チャーン・サイモンズ理論 vs. 接続形式

チャーン・サイモンズ理論(Chern–Simons theory)は3次元のシュワルツタイプの位相場理論であり、エドワード・ウィッテンによって発展した。この名前は作用がチャーン・サイモンズ 3-形式を積分した値に比例するからである。 凝縮系物性論では、チャーン・サイモンズ理論は状態のとして表される。数学では、ジョーンズ多項式のように結び目不変量や の不変量の計算に使われている。 特に、チャーン・サイモンズ理論は、理論のゲージ群と呼ばれる単純リー群 G と理論のレベルと呼ばれる作用にかける定数の数値により特徴付けられる。作用はゲージ変換に依存しているが、量子場理論の分配函数として、レベルが整数であり、ゲージが3-次元時空の全ての境界でゼロとなるときにうまく定義される。. 数学、特に微分幾何学では、接続形式(connection form)は、微分形式や(moving frame)のことばを使うことにより、接続のデータを構成する方法である。 歴史的には、接続形式はエリ・カルタン(Élie Cartan)により20世紀の前半に導入された。これは彼の動標構の方法の一部であり、彼の主要な動機であった。接続形式は標構(frame)(座標系)の選択に依存するので、テンソル的な対象ではない。接続形式の様々な一般化や再解釈がカルタンの一連の初期の仕事で定式化された。特に、主バンドル上の接続は、テンソル的な対象として接続形式の自然な再解釈を持っている。他方、接続形式は抽象的な主バンドル上というよりは、むしろ微分可能多様体(differentiable manifold)上に定義された微分形式であるという利点を持っている。従って、テンソル性がないにもかかわらず、それらの計算の実行が比較的容易なため、接続形式は使われ続けている。 また、物理学でも、接続形式は(gauge covariant derivative)を通して、ゲージ理論の脈絡で広く使われている。 接続形式は、微分形式の行列のなすベクトルバンドルの各々の基底に結びついている。接続形式は、基底変換でレヴィ・チヴィタ接続のクリストッフェル記号と同一な方法で、変換写像(transition functions)の外微分である変換をする。接続形式の主なテンソル的な不変量は、接続形式の曲率形式である。接バンドルとベクトルバンドルを同一視する(solder form)があるときは、別の不変量があり、捩れ率形式と言われる。多くの場合、接続形式は、ベクトルバンドルに構造群がリー群であるファイバーバンドルの構造を付加したものと考えられる。.

チャーン・サイモンズ理論と接続形式間の類似点

チャーン・サイモンズ理論と接続形式は(ユニオンペディアに)共通で7ものを持っています: 主束微分幾何学リー群ド・ラームコホモロジーゲージ理論接続 (主束)曲率形式

主束

数学において、主束(しゅそく、principal bundle)は、枠束を抽象化した概念である。 ここで枠束(frame bundle)とは、ファイバー束であって、任意の一点上のファイバー(繊維)が、あるベクトル空間における並び順の付いた基底全体の集合からなるものである。 主束は、構造群と呼ばれるある与えられた群 G により、ファイバーが G の主等質空間(英:principal homogeneous space)(G が自由かつ推移的に作用する集合のこと。G-トルソ(英:G-torsor)ともいう)になるものとして特徴付けられる。 これは、一般枠束におけるベクトル空間の全基底に対する一般線型群の作用を一般化したものである。 さらに、主 G 束(しゅ G そく、principal G-bundle)とは、ファイバー束であって、全てのファイバーが位相群 G の群の作用により主等質空間になるものをいう。 主 G 束は、群 G が束の構造群にもなるという意味で、G 束である。 主束は、位相幾何学および微分幾何学で重要な応用を有する。 主束は物理においても、ゲージ理論の根本的枠組みの一部を構成するという応用を見出した。 構造群 G を有するすべてのファイバー束は、一意に主 G 束を決定し、この主束により元の束が再構成できるという意味で、主束は、ファイバー束の理論に統一的枠組みを与える。.

チャーン・サイモンズ理論と主束 · 主束と接続形式 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

チャーン・サイモンズ理論と微分幾何学 · 微分幾何学と接続形式 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

チャーン・サイモンズ理論とリー群 · リー群と接続形式 · 続きを見る »

ド・ラームコホモロジー

ド・ラームコホモロジー(de Rham cohomology)とは可微分多様体のひとつの不変量で、多様体上の微分形式を用いて定まるベクトル空間である。多様体の位相不変量である特異コホモロジーとド・ラームコホモロジーは同型になるというド・ラームの定理がある。.

チャーン・サイモンズ理論とド・ラームコホモロジー · ド・ラームコホモロジーと接続形式 · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

ゲージ理論とチャーン・サイモンズ理論 · ゲージ理論と接続形式 · 続きを見る »

接続 (主束)

数学における接続(せつぞく)とは、多様体上に定められた様々なファイバー束について、ファイバーの間の平行移動を与える微分方程式的な概念である。この項では特にリー群を構造群とする主束の接続について解説する。 主束の接続を決めることは、束の全空間の接空間のなかで構造群の作用によって不変な「水平な方向」を定めること同じである。したがって、主束の接続はシャルル・エーレスマンによって導入された エーレスマン接続の特別なものと見なすことができる。 主束上に接続が与えられると、構造群の線形表現に付随するベクトル束に対してベクトル束の接続・共変微分を誘導することができる。また、リーマン多様体のレヴィ・チビタ接続など多くの幾何学的に重要な概念が主束の接続として定式化されている。.

チャーン・サイモンズ理論と接続 (主束) · 接続 (主束)と接続形式 · 続きを見る »

曲率形式

微分幾何学では、曲率形式(curvature form)は、主バンドル上の接続形式の曲率を記述する。リーマン幾何学では、曲率形式は、リーマン曲率テンソルの代行物か一般化と考えることができる。.

チャーン・サイモンズ理論と曲率形式 · 接続形式と曲率形式 · 続きを見る »

上記のリストは以下の質問に答えます

チャーン・サイモンズ理論と接続形式の間の比較

接続形式が54を有しているチャーン・サイモンズ理論は、78の関係を有しています。 彼らは一般的な7で持っているように、ジャカード指数は5.30%です = 7 / (78 + 54)。

参考文献

この記事では、チャーン・サイモンズ理論と接続形式との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »