ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

チェルノブイリ原子力発電所事故と反応度 (原子力)

ショートカット: 違い類似点ジャカード類似性係数参考文献

チェルノブイリ原子力発電所事故と反応度 (原子力)の違い

チェルノブイリ原子力発電所事故 vs. 反応度 (原子力)

チェルノブイリ原子力発電所事故(チェルノブイリげんしりょくはつでんしょじこ)は、1986年4月26日1時23分(モスクワ時間 ※UTC+3)にソビエト連邦(現:ウクライナ)のチェルノブイリ原子力発電所4号炉で起きた原子力事故。後に決められた国際原子力事象評価尺度 (INES) において最悪のレベル7(深刻な事故)に分類され、世界で最大の原子力発電所事故の一つである。チェルノブイリ事故とも。. 反応度(はんのうど、reactivity)は、原子炉制御の重要なパラメーターのひとつである。.

チェルノブイリ原子力発電所事故と反応度 (原子力)間の類似点

チェルノブイリ原子力発電所事故と反応度 (原子力)は(ユニオンペディアに)共通で14ものを持っています: 加圧水型原子炉原子炉チェルノブイリ原子力発電所ヨウ素ドップラー効果制御棒キセノンキセノン135ソビエト連邦蒸気タービン自己制御性RBMK-1000核分裂反応減速材

加圧水型原子炉

加圧水型原子炉(かあつすいがたげんしろ、Pressurized Water Reactor, PWR)は、原子炉の一種。核分裂反応によって生じた熱エネルギーで、一次冷却材である加圧水(圧力の高い軽水)を300℃以上に熱し、一次冷却材を蒸気発生器に通し、そこにおいて発生した二次冷却材の軽水の高温高圧蒸気によりタービン発電機を回す方式。発電炉として、原子力発電所の大型プラントのほか、原子力潜水艦、原子力空母などの小型プラントにも用いられる。.

チェルノブイリ原子力発電所事故と加圧水型原子炉 · 加圧水型原子炉と反応度 (原子力) · 続きを見る »

原子炉

建設中の沸騰水型原子炉(浜岡原子力発電所)国土航空写真 原子力工学における原子炉(げんしろ、nuclear reactor)とは、制御された核分裂連鎖反応を維持することができるよう核燃料などを配置した装置を言う。.

チェルノブイリ原子力発電所事故と原子炉 · 原子炉と反応度 (原子力) · 続きを見る »

チェルノブイリ原子力発電所

チェルノブイリ原子力発電所(中央付近)周辺の衛星画像、1997年撮影 チェルノブイリ原子力発電所の位置 チェルノブイリ原子力発電所(チェルノブイリげんしりょくはつでんしょ)は、ウクライナ(旧:ソビエト連邦)のチョルノーブィリ(チェルノブイリ)近郊、プリピャチ市にあった原子力発電所。 原子炉の炉型は、黒鉛減速沸騰軽水圧力管型原子炉のRBMK-1000型(ソビエト型)。 1971年に着工され、1978年5月に1号炉が営業運転を開始した。 しかし1986年4月26日午前1時23分(モスクワ時間 ※UTC+3)に4号炉が原発事故を起こし、世界中にその名が知られた。 その時点で、既に建設中だった5号炉と6号炉は建設が中止された。その後も1号炉-3号炉の運転は、国全体レベルで電力不足などを引き起こすなどとされたため続けられたが、2000年12月に最後まで稼働していた3号炉を停止した。.

チェルノブイリ原子力発電所とチェルノブイリ原子力発電所事故 · チェルノブイリ原子力発電所と反応度 (原子力) · 続きを見る »

ヨウ素

ヨウ素(ヨウそ、沃素、iodine)は、原子番号 53、原子量 126.9 の元素である。元素記号は I。あるいは分子式が I2 と表される二原子分子であるヨウ素の単体の呼称。 ハロゲン元素の一つ。ヨード(沃度)ともいう。分子量は253.8。融点は113.6 ℃で、常温、常圧では固体であるが、昇華性がある。固体の結晶系は紫黒色の斜方晶系で、反応性は塩素、臭素より小さい。水にはあまり溶けないが、ヨウ化カリウム水溶液にはよく溶ける。これは下式のように、ヨウ化物イオンとの反応が起こることによる。 単体のヨウ素は、毒物及び劇物取締法により医薬用外劇物に指定されている。.

チェルノブイリ原子力発電所事故とヨウ素 · ヨウ素と反応度 (原子力) · 続きを見る »

ドップラー効果

ドップラー効果(ドップラーこうか、Doppler effect)またはドップラーシフト(Doppler shift)とは、波(音波や電磁波など)の発生源(音源・光源など)と観測者との相対的な速度の存在によって、波の周波数が異なって観測される現象をいう。.

チェルノブイリ原子力発電所事故とドップラー効果 · ドップラー効果と反応度 (原子力) · 続きを見る »

制御棒

制御棒(せいぎょぼう、英語:control rod)とは、原子炉の出力を制御するための棒状または板状の物体である。.

チェルノブイリ原子力発電所事故と制御棒 · 制御棒と反応度 (原子力) · 続きを見る »

キセノン

ノン(xenon)は原子番号54の元素。元素記号は Xe。希ガス元素の一つ。ラムゼー (W. Ramsay) と (M. W. Travers) によって1898年に発見された。ギリシャ語で「奇妙な」「なじみにくいもの」を意味する ξένος (xenos) の中性単数形の ξένον (xenon) が語源。英語圏ではゼノン と発音されることが多い。 常温常圧では無色無臭の気体。融点-111.9 、沸点-108.1 。空気中にもごく僅かに(約0.087 ppm)含まれる。固体では安定な面心立方構造をとる。 一般に希ガスは最外殻電子が閉殻構造をとるため、反応性はほとんど見られない。しかし、キセノンの最外殻 (5s25p6) は原子核からの距離が離れているため、他の電子による遮蔽効果によって束縛が弱まっており、比較的イオン化しやすい(イオン化エネルギーが他の希ガス元素に比べて相対的に低い)。このため、反応性の強いフッ素や酸素と反応して、フッ化物や酸化物を形成する。.

キセノンとチェルノブイリ原子力発電所事故 · キセノンと反応度 (原子力) · 続きを見る »

キセノン135

ノン135(Xenon-135、135Xe)は、半減期が約9.2時間の不安定なキセノンの同位体であり、ウランの核分裂生成物の1つである。キセノン135は、既知の最も強力な中性子捕獲物質(200万バーン)、核毒物であり、原子炉の運転に大きな影響を与える。.

キセノン135とチェルノブイリ原子力発電所事故 · キセノン135と反応度 (原子力) · 続きを見る »

ソビエト連邦

ビエト社会主義共和国連邦(ソビエトしゃかいしゅぎきょうわこくれんぽう、Союз Советских Социалистических Республик)は、1922年から1991年までの間に存在したユーラシア大陸における共和制国家である。複数のソビエト共和国により構成された連邦国家であり、マルクス・レーニン主義を掲げたソビエト連邦共産党による一党制の社会主義国家でもある。首都はモスクワ。 多数ある地方のソビエト共和国の政治および経済の統合は、高度に中央集権化されていた。.

ソビエト連邦とチェルノブイリ原子力発電所事故 · ソビエト連邦と反応度 (原子力) · 続きを見る »

蒸気タービン

蒸気タービンの動翼 発電用蒸気タービン 蒸気タービン(じょうきタービン、steam turbine)は、蒸気のもつエネルギーを、タービン(羽根車)と軸を介して回転運動へと変換する外燃機関である。火力・原子力・地熱などによる発電や産業用途(発電・ポンプ駆動等)に利用される。蒸気としては一般に水蒸気が使われる。 蒸気を利用する原動機としては、蒸気タービンの他に、蒸気でシリンダ内のピストンを往復運動させるレシプロ型の蒸気エンジンが存在する。レシプロ型については蒸気機関を参照のこと。.

チェルノブイリ原子力発電所事故と蒸気タービン · 反応度 (原子力)と蒸気タービン · 続きを見る »

自己制御性

自己制御性(じこせいぎょせい、Self Regulating Characteristics)とは、原子炉において、外部からの制御に依らず、核分裂反応の進行を安定させる自然の特性。 核分裂反応が進行し過出力になると、炉心の温度が上昇してボイド(蒸気)が増加する。炉内の容積は一定であるのでボイドの増加分だけ減速材である軽水が少なくなり、高速中性子が熱中性子に減速されず、結果として核分裂反応の進行が抑えられる。 逆に核分裂反応が弱まり低出力になると、炉心の温度が下降しボイドが減少する。減速材である軽水が増え、高速中性子が熱中性子に減速され、核分裂反応が進行する。 この自己制御性は、負の反応度フィードバックとも言われる。また、正の反応度フィードバックでは、過出力時には核分裂の進行を、低出力時には核分裂の減退を招き、炉は非常に不安定になる。正の反応度フィードバック特性を持った原子力発電所には、チェルノブイリ原子力発電所のRBMK型や高速増殖炉などがある。.

チェルノブイリ原子力発電所事故と自己制御性 · 反応度 (原子力)と自己制御性 · 続きを見る »

RBMK-1000

RBMK-1000は、ソ連が開発した、電気出力100万kWの商業用発電原子炉で、炉型は黒鉛減速沸騰軽水圧力管型原子炉である。RBMKとはロシア語のReaktor Bolshoy Moshchnosti Kanalnyy(hi-power pressure tube reactors、高出力圧力管原子炉)のアクロニムである。ロシア語ではРБМК(Реактор Большой Мощности Канальный)と表記される。英語ではLWGR(Light Water cooled Graphite moderated Reactor、軽水冷却黒鉛減速炉)である。後ろの数字は大まかな出力を示し、RBMK-1000とは100万kW級RBMKを意味する。ウクライナのチェルノブイリ原子力発電所の4号炉が事故を起こしたことで有名な原子炉。いわゆるソ連型。 RBMK-1000には原子炉格納容器が無いことで知られる。黒鉛は軽水とくらべて中性子減速能が劣るため、十分な減速能を得るために黒鉛炉の炉心は大きくならざるを得ない。実際には外径で14.8mであり、軽水炉の4m~6mよりはるかに大きい。このため原子炉全体ではなく、蒸気配管の一部のみが格納されているに過ぎない。また、その構成上、原子炉は複数の棒状の構造物(ブロック)で構築されており、一般に「炉」と言われて想像されるような容器形の構成物はない。 この型の原子炉は低出力領域において正の反応度出力係数を持っており、これを補償するために、設計者は原子炉内に常に一定の本数の制御棒を挿入しておく事を求めた。このことは運転規則に明記されたものの、これを保障するための制御棒引き抜き本数に連動した警報装置、及び緊急停止装置などは設けられなかった。1986年4月26日、チェルノブイリ原子力発電所4号炉では、蒸気タービンの惰力運転試験を実行するために、原子炉は蒸気タービンから切り離され、出力を下げられていた状態であった。しかし、再試験の際、出力を上げようとして規定以上の制御棒を抜いてしまった。そのため原子炉出力が急上昇し、それを非常停止させようと制御棒を一斉挿入した際、爆発に至った。また、同炉では制御棒の完全挿入までに18秒以上も掛かる仕様であったため、制御が間に合わなかったとされる。日本の軽水炉における完全挿入までの時間は、2秒から4秒程度である。.

RBMK-1000とチェルノブイリ原子力発電所事故 · RBMK-1000と反応度 (原子力) · 続きを見る »

核分裂反応

核分裂反応(かくぶんれつはんのう、nuclear fission)とは、不安定核(重い原子核や陽子過剰核、中性子過剰核など)が分裂してより軽い元素を二つ以上作る反応のことを指す。オットー・ハーンとフリッツ・シュトラスマンらが天然ウランに低速中性子(slow neutron)を照射し、反応生成物にバリウムの同位体を見出したことにより発見され、リーゼ・マイトナーとオットー・ロベルト・フリッシュらが核分裂反応であると解釈し、fission(核分裂)と命名した。.

チェルノブイリ原子力発電所事故と核分裂反応 · 反応度 (原子力)と核分裂反応 · 続きを見る »

減速材

減速材(げんそくざい、)とは原子力発電において核分裂後に放出される中性子の速度を下げる役割を果たすもの。.

チェルノブイリ原子力発電所事故と減速材 · 反応度 (原子力)と減速材 · 続きを見る »

上記のリストは以下の質問に答えます

チェルノブイリ原子力発電所事故と反応度 (原子力)の間の比較

反応度 (原子力)が32を有しているチェルノブイリ原子力発電所事故は、260の関係を有しています。 彼らは一般的な14で持っているように、ジャカード指数は4.79%です = 14 / (260 + 32)。

参考文献

この記事では、チェルノブイリ原子力発電所事故と反応度 (原子力)との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »