ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

セントラルドグマとリボ核酸

ショートカット: 違い類似点ジャカード類似性係数参考文献

セントラルドグマとリボ核酸の違い

セントラルドグマ vs. リボ核酸

ントラルドグマ()とは、遺伝情報は「DNA→(転写)→mRNA→(翻訳)→タンパク質」の順に伝達される、という、分子生物学の概念である。フランシス・クリックが1958年に提唱したCrick, F.H.C. (1958): Symp. リボ核酸(リボかくさん、ribonucleic acid, RNA)は、リボヌクレオチドがホスホジエステル結合でつながった核酸である。RNAと略されることが多い。RNAのヌクレオチドはリボース、リン酸、塩基から構成される。基本的に核酸塩基としてアデニン (A)、グアニン (G)、シトシン (C)、ウラシル (U) を有する。RNAポリメラーゼによりDNAを鋳型にして転写(合成)される。各塩基はDNAのそれと対応しているが、ウラシルはチミンに対応する。RNAは生体内でタンパク質合成を行う際に必要なリボソームの活性中心部位を構成している。 生体内での挙動や構造により、伝令RNA(メッセンジャーRNA、mRNA)、運搬RNA(トランスファーRNA、tRNA)、リボソームRNA (rRNA)、ノンコーディングRNA (ncRNA)、リボザイム、二重鎖RNA (dsRNA) などさまざまな分類がなされる。.

セントラルドグマとリボ核酸間の類似点

セントラルドグマとリボ核酸は(ユニオンペディアに)共通で14ものを持っています: 伝令RNAリボソームデオキシリボ核酸アミノ酸ゲノムスプライシングタンパク質紫外線翻訳 (生物学)真核生物生物転写 (生物学)転移RNARNAポリメラーゼ

伝令RNA

伝令RNA(でんれいRNA、メッセンジャーRNA、英語:messenger RNA)は、蛋白質に翻訳され得る塩基配列情報と構造を持ったRNAのことであり、通常mRNAと表記される。DNAに比べてその長さは短い。DNAからコピーした遺伝情報を担っており、その遺伝情報は、特定のアミノ酸に対応するコドンと呼ばれる3塩基配列という形になっている。 mRNAはDNAから写し取られた遺伝情報に従い、タンパク質を合成する(詳しくは翻訳)。翻訳の役目を終えたmRNAは細胞に不要としてすぐに分解され、寿命が短く、分解しやすくするために1本鎖であるともいわれている。 古細菌、真正細菌では転写されたRNAはほぼそのままでmRNAとして機能する。一方真核生物では転写されたmRNA前駆体はいくつかの切断(スプライシング)、修飾といったプロセシングを受けたのちに成熟mRNAになる。 真核生物のmRNAはRNAポリメラーゼIIによって転写されたRNAに由来する。5'末端にはm7Gキャップがあり、3'末端は一般にポリアデニル化される(poly (A)鎖で終了している)。これらの構造やmRNAの塩基配列は翻訳活性やmRNAの分解を制御する機能も持っている。古細菌、真正細菌も3'末端に短いpoly (A)鎖を持つが、5'末端のキャップ構造は持たない。 poly (A)鎖はrRNAやtRNAには存在しないmRNAの特徴であるとされており、このことを利用してmRNAを特異的に精製することができる。また、mRNAを鋳型にしてDNAを逆転写酵素によって合成することができ、これはcDNAと呼ばれる。cDNAは遺伝子が働いていることの非常に信頼性の高い証拠であり、ゲノムプロジェクトによって得られた大量のシークエンスデータの中から遺伝子を探す作業を補助することができる。.

セントラルドグマと伝令RNA · リボ核酸と伝令RNA · 続きを見る »

リボソーム

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) '''リボソーム'''、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 リボソームまたはリボゾーム(; ライボソーム)は、あらゆる生物の細胞内に存在する構造であり、粗面小胞体 (rER) に付着している膜結合リボソームと細胞質中に存在する遊離リボソームがある。mRNAの遺伝情報を読み取ってタンパク質へと変換する機構である翻訳が行われる場である。大小2つのサブユニットから成り、これらはタンパク質(リボソームタンパク、ribosomal protein)とRNA(リボソームRNA、rRNA; ribosomal RNA)の複合体である。細胞小器官に分類される場合もある。2000年、X線構造解析により立体構造が決定された。.

セントラルドグマとリボソーム · リボソームとリボ核酸 · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

セントラルドグマとデオキシリボ核酸 · デオキシリボ核酸とリボ核酸 · 続きを見る »

アミノ酸

リシンの構造式。最も構造が単純なアミノ酸 トリプトファンの構造式。最も構造が複雑なアミノ酸の1つ。 アミノ酸(アミノさん、amino acid)とは、広義には(特に化学の分野では)、アミノ基とカルボキシル基の両方の官能基を持つ有機化合物の総称である。一方、狭義には(特に生化学の分野やその他より一般的な場合には)、生体のタンパク質の構成ユニットとなる「α-アミノ酸」を指す。分子生物学など、生体分子をあつかう生命科学分野においては、遺伝暗号表に含まれるプロリン(イミノ酸に分類される)を、便宜上アミノ酸に含めることが多い。 タンパク質を構成するアミノ酸のうち、動物が体内で合成できないアミノ酸を、その種にとっての必須アミノ酸と呼ぶ。必須アミノ酸は動物種によって異なる。.

アミノ酸とセントラルドグマ · アミノ酸とリボ核酸 · 続きを見る »

ゲノム

ノム(Genom、genome, ジーノーム)とは、「遺伝情報の全体・総体」を意味するドイツ語由来の語彙であり、より具体的・限定的な意味・用法としては、現在、大きく分けて以下の2つがある。 古典的遺伝学の立場からは、二倍体生物におけるゲノムは生殖細胞に含まれる染色体もしくは遺伝子全体を指し、このため体細胞には2組のゲノムが存在すると考える。原核生物、細胞内小器官、ウイルス等の一倍体生物においては、DNA(一部のウイルスやウイロイドではRNA)上の全遺伝情報を指す。 分子生物学の立場からは、すべての生物を一元的に扱いたいという考えに基づき、ゲノムはある生物のもつ全ての核酸上の遺伝情報としている。ただし、真核生物の場合は細胞小器官(ミトコンドリア、葉緑体など)が持つゲノムは独立に扱われる(ヒトゲノムにヒトミトコンドリアのゲノムは含まれない)。 ゲノムは、タンパク質をコードするコーディング領域と、それ以外のノンコーディング領域に大別される。 ゲノム解読当初、ノンコーディング領域はその一部が遺伝子発現調節等に関与することが知られていたが、大部分は意味をもたないものと考えられ、ジャンクDNAとも呼ばれていた。現在では遺伝子発現調節のほか、RNA遺伝子など、生体機能に必須の情報がこの領域に多く含まれることが明らかにされている。.

ゲノムとセントラルドグマ · ゲノムとリボ核酸 · 続きを見る »

スプライシング

プライシング (splicing) は、細長い物をつなぐ様子を表す言葉。.

スプライシングとセントラルドグマ · スプライシングとリボ核酸 · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

セントラルドグマとタンパク質 · タンパク質とリボ核酸 · 続きを見る »

紫外線

紫外線(しがいせん、ultraviolet)とは、波長が10 - 400 nm、即ち可視光線より短く軟X線より長い不可視光線の電磁波である。.

セントラルドグマと紫外線 · リボ核酸と紫外線 · 続きを見る »

翻訳 (生物学)

分子生物学などにおいては、翻訳(ほんやく、Translation)とは、mRNAの情報に基づいて、タンパク質を合成する反応を指す。本来は細胞内での反応を指すが、細胞によらずに同様の反応を引き起こす系(無細胞翻訳系)も開発されている。.

セントラルドグマと翻訳 (生物学) · リボ核酸と翻訳 (生物学) · 続きを見る »

真核生物

真核生物(しんかくせいぶつ、学名: 、英: Eukaryote)は、動物、植物、菌類、原生生物など、身体を構成する細胞の中に細胞核と呼ばれる細胞小器官を有する生物である。真核生物以外の生物は原核生物と呼ばれる。 生物を基本的な遺伝の仕組みや生化学的性質を元に分類する3ドメイン説では、古細菌(アーキア)ドメイン、真正細菌(バクテリア)ドメインと共に生物界を3分する。他の2つのドメインに比べ、非常に大型で形態的に多様性に富むという特徴を持つ。かつての5界説では、動物界、植物界、菌界、原生生物界の4界が真核生物に含まれる。.

セントラルドグマと真核生物 · リボ核酸と真核生物 · 続きを見る »

生物

生物(せいぶつ)または生き物(いきもの)とは、動物・菌類・植物・古細菌・真正細菌などを総称した呼び方である。 地球上の全ての生物の共通の祖先があり(原始生命体・共通祖先)、その子孫達が増殖し複製するにつれ遺伝子に様々な変異が生じることで進化がおきたとされている。結果、バクテリアからヒトにいたる生物多様性が生まれ、お互いの存在(他者)や地球環境に依存しながら、相互に複雑な関係で結ばれる生物圏を形成するにいたっている。そのことをガイアとも呼ぶものもある。 これまで記録された数だけでも百数十万種に上ると言われており、そのうち動物は100万種以上、植物(菌類や藻類も含む)は50万種ほどである。 生物(なまもの)と読むと、加熱調理などをしていない食品のことを指す。具体的な例を挙げれば“刺身”などが代表的な例としてよく用いられる。.

セントラルドグマと生物 · リボ核酸と生物 · 続きを見る »

転写 (生物学)

転写中のDNAとRNAの電子顕微鏡写真。DNAの周りに薄く広がるのが合成途中のRNA(多数のRNAが同時に転写されているため帯状に見える)。RNAポリメラーゼはDNA上をBeginからEndにかけて移動しながらDNAの情報をRNAに写し取っていく。Beginではまだ転写が開始された直後なため個々のRNA鎖が短く、帯の幅が狭く見えるが、End付近では転写がかなり進行しているため個々のRNA鎖が長く(帯の幅が広く)なっている 転写(てんしゃ、Transcription)とは、一般に染色体またはオルガネラのDNAの塩基配列(遺伝子)を元に、RNA(転写産物transcription product)が合成されることをいう。遺伝子が機能するための過程(遺伝子発現)の一つであり、セントラルドグマの最初の段階にあたる。.

セントラルドグマと転写 (生物学) · リボ核酸と転写 (生物学) · 続きを見る »

転移RNA

転移RNA(てんい-、transfer RNA)は73〜93塩基の長さの小さなRNAである。リボソームのタンパク質合成部位でmRNA上の塩基配列(コドン)を認識し、対応するアミノ酸を合成中のポリペプチド鎖に転移させるためのアダプター分子である。運搬RNA、トランスファーRNAなどとも呼ぶが、通常tRNAと略記される。.

セントラルドグマと転移RNA · リボ核酸と転移RNA · 続きを見る »

RNAポリメラーゼ

RNAポリメラーゼ (RNA polymerase) とは、リボヌクレオチドを重合させてRNAを合成する酵素。DNAの鋳型鎖(一本鎖)の塩基配列を読み取って相補的なRNAを合成する反応(転写)を触媒する中心となる酵素をDNA依存性RNAポリメラーゼという(単に「RNAポリメラーゼ」とも呼ぶ)。「ポリメラーゼ」は、より英語発音に近い「ポリメレース」と呼ばれることも多い。 真核生物では、DNAを鋳型にしてmRNAやsnRNA遺伝子の多くを転写するRNAポリメラーゼIIがよく知られる。このほかに35S rRNA前駆体を転写するRNAポリメラーゼI、tRNAとU6 snRNA、5S rRNA前駆体等を転写するRNA ポリメラーゼIIIなどがあり、上記三種は DNA依存性RNAポリメラーゼと呼ばれる。また、RNAを鋳型にRNA を合成するRNA依存性RNAポリメラーゼもあり、多くのRNAウイルスで重要な機能を果たす以外に、microRNAの増幅過程にも利用される。 鋳型を必要としない物もあり、初めて発見されたRNA ポリメラーゼであるポリヌクレオチドホスホリラーゼ(ポリヌクレオチドフォスフォリレース、ポリニュークリオタイドフォスフォリレース)もそのひとつとしてあげられる。この酵素は実際には細菌の細胞内でヌクレアーゼとして働くが、試験管内ではRNA を合成することができる。これを利用して一種類のヌクレオチドからなるRNAを合成し、それから翻訳されるタンパク質を調べることで初めて遺伝暗号の決定が行われた。真核生物のもつpoly(A)ポリメラーゼも同様に鋳型を必要とせず、Pol II転写産物の3'末端にpoly(A)鎖を付加することで転写後の遺伝子発現制御機構の一端を担っている。 真核生物の転写装置(RNAポリメラーゼ)は、Pol I、Pol II、Pol IIIの3種がある。それぞれ10種類以上ものサブユニットから構成される(基本的には12種)。また、古細菌のRNAポリメラーゼもサブユニット数が多く、9-14種のサブユニットから構成されている。ユリアーキオータではいくつかのサブユニットが省かれているが、一部のクレンアーキオータには真核生物の12種類のサブユニットが全て保存されており、真核生物の持つ3種のRNAポリメラーゼの祖先型と考えられている。古細菌のRNAポリメラーゼは、Aサブユニットが2つに分かれている特徴がある。 一方で、真正細菌のRNAポリメラーゼは全体的に真核生物や古細菌のものより単純な構成である。ααββ'ωの4種5サブユニットからなるコアエンザイムに、σが会合したホロエンザイムと呼ばれる形態で正常なプロモーターを認識する。シグマ因子は遺伝子上流のプロモーター配列を認識して転写を開始する役割を担っている。.

RNAポリメラーゼとセントラルドグマ · RNAポリメラーゼとリボ核酸 · 続きを見る »

上記のリストは以下の質問に答えます

セントラルドグマとリボ核酸の間の比較

リボ核酸が76を有しているセントラルドグマは、50の関係を有しています。 彼らは一般的な14で持っているように、ジャカード指数は11.11%です = 14 / (50 + 76)。

参考文献

この記事では、セントラルドグマとリボ核酸との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »