ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

スーパーオキシドディスムターゼと過酸化水素

ショートカット: 違い類似点ジャカード類似性係数参考文献

スーパーオキシドディスムターゼと過酸化水素の違い

スーパーオキシドディスムターゼ vs. 過酸化水素

ーパーオキシドディスムターゼ (Superoxide dismutase, SOD) は、細胞内に発生した活性酸素を分解する酵素である。酸素消費量に対するSODの活性の強さと、寿命に相関があると言われるが、これは体重に対して消費する酸素の量が多い動物種ほど寿命が短くなるはずのところを、SODが活性酸素を分解することで寿命を延ばしているとするものであり、動物の中でも霊長類、とくにヒトはSODの活性の高さが際立ち、ヒトが長寿である原因のひとつとされている。 SODは、スーパーオキシドアニオン(・O2-)を酸素と過酸化水素へ不均化する酸化還元酵素である。活性中心に銅(II)イオンと亜鉛(II)イオン(Cu, ZnSOD)、またはマンガン(III)イオン(MnSOD)や鉄(III) イオン(FeSOD)のように二価または三価の金属イオンを持った酵素で、細胞質(Cu, ZnSOD) やミトコンドリア(MnSOD)に多く局在している。酸化ストレスを減少させる役割を持つ。最近、ニッケルを持つ酵素(NiSOD)も発見されている。生成した過酸化水素はカタラーゼやペルオキシダーゼなどによって分解される。 がん細胞では活性酸素が高頻度に産生されており、SODの阻害に感受性を示す場合があるため、抗がん剤の標的として研究が行われている。. 過酸化水素(かさんかすいそ、Hydrogen peroxide)は、化学式 HO で表される化合物。しばしば過水(かすい)と略称される。主に水溶液で扱われる。対象により強力な酸化剤にも還元剤にもなり、殺菌剤、漂白剤として利用される。発見者はフランスのルイ・テナール。.

スーパーオキシドディスムターゼと過酸化水素間の類似点

スーパーオキシドディスムターゼと過酸化水素は(ユニオンペディアに)共通で15ものを持っています: 不均化ペルオキシダーゼミトコンドリアマンガンヒトニッケルカタラーゼ真正細菌補因子超酸化物酸化酸素酵素色素体活性酸素

不均化

不均化(ふきんか)とは、同一種類の化学種(多くの場合は分子)が2個以上互いに反応して2種類以上の異なる種類の生成物を与える化学反応のこと。不均化の逆反応は均等化である。 化学反応式で記述するとnを2以上として で表される反応のことである。場合によっては他の物質が関与することもある。 まず、A のうちある分子が酸化剤、別の分子が還元剤として反応し、酸化された B と還元された C を与えるタイプの反応がある。 例えば塩素酸カリウムは 400 ℃ 以上で過塩素酸カリウムと塩化カリウムに不均化する。 この反応では 3分子の塩素酸イオンが還元剤として働いて+V価から+VII価へ酸化され、1分子の塩素酸イオンは酸化剤として働いて+V価から−I価へ還元されている。 カニッツァロ反応では2分子のアルデヒドから酸化されたカルボン酸塩と還元されたアルコールそれぞれ1分子が生成する。 アルコキシドを触媒とすると、エステル化まで進む。これをティシチェンコ反応と呼び、酢酸エチルや安息香酸ベンジルの製法となっている。 ラジカル連鎖反応の終止反応として1分子のラジカルがもう1分子のラジカルから原子団(通常は水素原子)を引き抜いてそれぞれ飽和化合物と不飽和化合物となりラジカルが消滅する反応がある。 一方のラジカルは水素を失って、もう一方のラジカルは水素を得ているので、この反応も酸化還元反応である。 スーパーオキシドジスムターゼは生体内で発生する活性酸素の一つであるスーパーオキシドアニオンラジカルを不均化させて過酸化水素と酸素に変換している。 また、同一種類の2分子の間で原子団を交換した結果、異なる2つの生成物となり不均化することもある。 例えば非対称なジスルフィドは塩基触媒により対称なジスルフィドへと不均化する。 生体内にはトランスフェラーゼと呼ばれるある原子団をある基質から別の基質に転移させる酵素が存在するが、転移元と転移先が同一の物質であるならこの反応は不均化反応となる。 このような反応を行う酵素としては、デキストリン間で糖鎖の転移を行うデキストリングリコシルトランスフェラーゼが知られている。.

スーパーオキシドディスムターゼと不均化 · 不均化と過酸化水素 · 続きを見る »

ペルオキシダーゼ

ルタチオンペルオキシダーゼ 1 ペルオキシダーゼ (peroxidase,EC番号) は、ペルオキシド構造を酸化的に切断して2つのヒドロキシル基に分解する酵素である。つまり、 という反応を触媒する。活性部位にヘムを補因子として含んでいたり、酸化還元活性を持つシステインやセレノシステインを持つことが多い。.

スーパーオキシドディスムターゼとペルオキシダーゼ · ペルオキシダーゼと過酸化水素 · 続きを見る »

ミトコンドリア

ミトコンドリアの電子顕微鏡写真。マトリックスや膜がみえる。 ミトコンドリア(mitochondrion、複数形: mitochondria)は真核生物の細胞小器官であり、糸粒体(しりゅうたい)とも呼ばれる。二重の生体膜からなり、独自のDNA(ミトコンドリアDNA=mtDNA)を持ち、分裂、増殖する。mtDNAはATP合成以外の生命現象にも関与する。酸素呼吸(好気呼吸)の場として知られている。また、細胞のアポトーシスにおいても重要な役割を担っている。mtDNAとその遺伝子産物は一部が細胞表面にも局在し突然変異は自然免疫系が特異的に排除 する。ヒトにおいては、肝臓、腎臓、筋肉、脳などの代謝の活発な細胞に数百、数千個のミトコンドリアが存在し、細胞質の約40%を占めている。平均では1細胞中に300-400個のミトコンドリアが存在し、全身で体重の10%を占めている。ヤヌスグリーンによって青緑色に染色される。 9がミトコンドリア典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) '''ミトコンドリア'''、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体.

スーパーオキシドディスムターゼとミトコンドリア · ミトコンドリアと過酸化水素 · 続きを見る »

マンガン

マンガン(manganese 、manganum)は原子番号25の元素。元素記号は Mn。日本語カタカナ表記での名称のマンガンは Mangan をカタカナに変換したもので、日本における漢字表記の当て字は満俺である。.

スーパーオキシドディスムターゼとマンガン · マンガンと過酸化水素 · 続きを見る »

ヒト

ヒト(人、英: human)とは、広義にはヒト亜族(Hominina)に属する動物の総称であり、狭義には現生の(現在生きている)人類(学名: )を指す岩波 生物学辞典 第四版 p.1158 ヒト。 「ヒト」はいわゆる「人間」の生物学上の標準和名である。生物学上の種としての存在を指す場合には、カタカナを用いて、こう表記することが多い。 本記事では、ヒトの生物学的側面について述べる。現生の人類(狭義のヒト)に重きを置いて説明するが、その説明にあたって広義のヒトにも言及する。 なお、化石人類を含めた広義のヒトについてはヒト亜族も参照のこと。ヒトの進化については「人類の進化」および「古人類学」の項目を参照のこと。 ヒトの分布図.

スーパーオキシドディスムターゼとヒト · ヒトと過酸化水素 · 続きを見る »

ニッケル

ニッケル (nikkel, nickel, niccolum) は、原子番号28の金属元素である。元素記号は Ni。 地殻中の存在比は約105 ppmと推定されそれほど多いわけではないが、鉄隕石中には数%含まれる。特に 62Ni の1核子当たりの結合エネルギーが全原子中で最大であるなどの点から、鉄と共に最も安定な元素である。岩石惑星を構成する元素として比較的多量に存在し、地球中心部の核にも数%含まれると推定されている。.

スーパーオキシドディスムターゼとニッケル · ニッケルと過酸化水素 · 続きを見る »

カタラーゼ

タラーゼ (catalase) は、過酸化水素を不均化して酸素と水に変える反応を触媒する酵素。 ヘムタンパク質の一種であり、プロトヘムを含んでいる。細胞内のペルオキシソームに存在し、過酸化水素を使って酸化・解毒をおこなう。 1818年に過酸化水素を発見したフランスの化学者ルイ・テナールは、カタラーゼとして知られるある種の物質が、過酸化水素の分解速度を高めることに気付いた。この物質をカタラーゼと命名したのは、ドイツの農業化学者O.レーブである。また、カタラーゼを単離して結晶化したのはアメリカの化学者ジェームズ・サムナー、カタラーゼのアミノ酸配列を決定したのはWalter A. Schroederらである。 毎秒当たりの代謝回転数は全酵素のなかでも最も高く、4000万に達する。ヒトの場合、カタラーゼは4つのサブユニットで構成されており、各サブユニットは526のアミノ酸から成立している。分子量は約24万。ヘムとマンガンを補因子として用いる。 ヒトをはじめとして肝臓に多く存在するため、肝臓をオキシドールにつけると酸素が発生する。ヒトの場合、このタンパク質をコードしている遺伝子はCATで第11染色体のp13に存在する。また、この遺伝子が欠損すると無カタラーゼ症を発症する。 至適pHは約7.0、至適温度は37℃。以下の反応の活性化エネルギーを下げることで、触媒として機能する。 過酸化水素のほか、ホルムアルデヒドやギ酸も基質として触媒できる。重金属の陽イオンやシアン化物は、阻害因子として働く。 ほぼすべての好気性微生物が有しているカタラーゼは、ユリアーキオータ門に属するMethanosarcina barkeriなどのいくつかの嫌気性微生物にも存在する。また、細菌がこの酵素をもつかは、細菌を同定する上で非常に重要であり、それはカタラーゼテストによって判別できる。 高温のガスを噴射するミイデラゴミムシの能力は、カタラーゼの高い代謝回転数に依存している。カタラーゼの含有量が多ければ多いほど、過酸化水素水(オキシドール)を混ぜた時に、より速く、多くの酸素を発生できる。.

カタラーゼとスーパーオキシドディスムターゼ · カタラーゼと過酸化水素 · 続きを見る »

真正細菌

真正細菌(しんせいさいきん、bacterium、複数形 bacteria バクテリア)あるいは単に細菌(さいきん)とは、分類学上のドメインの一つ、あるいはそこに含まれる生物のことである。sn-グリセロール3-リン酸の脂肪酸エステルより構成される細胞膜を持つ原核生物と定義される。古細菌ドメイン、真核生物ドメインとともに、全生物界を三分する。 真核生物と比較した場合、構造は非常に単純である。しかしながら、はるかに多様な代謝系や栄養要求性を示し、生息環境も生物圏と考えられる全ての環境に広がっている。その生物量は膨大である。腸内細菌や発酵細菌、あるいは病原細菌として人との関わりも深い。語源はギリシャ語の「小さな杖」(βακτήριον)に由来している。.

スーパーオキシドディスムターゼと真正細菌 · 真正細菌と過酸化水素 · 続きを見る »

補因子

生化学の分野において、補因子(ほいんし cofactor)は、酵素の触媒活性に必要なタンパク質以外の化学物質である。 補因子は「補助分子、またはイオン」であると考えられ、生化学的な変化を助けている。ただし、水や豊富に存在するイオンなどは補因子とはみなされない。それは、普遍的に存在し制限されることが滅多にないためである。この語句を無機分子に限って用いている資料もある。 補因子は2つのグループに大別できる。1つは補酵素(ほこうそ、coenzyme)で、タンパク質以外の有機分子であり、官能基を酵素間で輸送する。これらの分子は酵素とゆるく結合し、酵素反応の通常の段階では解離される。一方、補欠分子族(ほけつぶんしぞく、prosthetic group)はタンパク質の一部を構成しており、常時結合しているものである。.

スーパーオキシドディスムターゼと補因子 · 補因子と過酸化水素 · 続きを見る »

超酸化物

超酸化物(ちょうさんかぶつ、superoxide)とは、スーパーオキシドアニオン(化学式: )を含む化学物質の総称である。自然界では酸素分子()の一電子還元により広範囲に生成している点が重要であり、1つの不対電子を持つ。スーパーオキシドアニオンは、二酸素と同様にフリーラジカルであり、常磁性を有する。一般に活性酸素と呼ばれる化学種の一種である。 ルイス式で表したスーパーオキシドアニオン。それぞれの酸素原子に存在する、6つの外殻電子を黒点で表している。周りにある電子対は2つの酸素原子に共有され、左上には不対電子があり、(イオン化の時に)付加した電子による負電荷は赤点で表す。.

スーパーオキシドディスムターゼと超酸化物 · 超酸化物と過酸化水素 · 続きを見る »

酸化

酸化(さんか、英:oxidation)とは、対象の物質が酸素と化合すること。 例えば、鉄がさびて酸化鉄になる場合、鉄の電子は酸素(O2)に移動しており、鉄は酸化されていることが分かる。 目的化学物質を酸化する為に使用する試薬、原料を酸化剤と呼ぶ。ただし、反応における酸化と還元との役割は物質間で相対的である為、一般的に酸化剤と呼ぶ物質であっても、実際に酸化剤として働くかどうかは、反応させる相手の物質による。.

スーパーオキシドディスムターゼと酸化 · 過酸化水素と酸化 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

スーパーオキシドディスムターゼと酸素 · 過酸化水素と酸素 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

スーパーオキシドディスムターゼと酵素 · 過酸化水素と酵素 · 続きを見る »

色素体

色素体(しきそたい、もしくはプラスチド、plastid, chromatophore)は、植物や藻類などに見られ、光合成をはじめとする同化作用、糖や脂肪などの貯蔵、様々な種類の化合物の合成などを担う、半自律的な細胞小器官の総称である。代表的なものとして葉緑体がある。.

スーパーオキシドディスムターゼと色素体 · 色素体と過酸化水素 · 続きを見る »

活性酸素

活性酸素(かっせいさんそ、Reactive Oxygen Species、ROS)は、大気中に含まれる酸素分子がより反応性の高い化合物に変化したものの総称である吉川敏一,河野雅弘,野原一子『活性酸素・フリーラジカルのすべて』(丸善 2000年)p.13。一般的にスーパーオキシドアニオンラジカル(通称スーパーオキシド)、ヒドロキシルラジカル、過酸化水素、一重項酸素の4種類とされる。活性酸素は、酸素分子が不対電子を捕獲することによってスーパーオキシド、ヒドロキシルラジカル、過酸化水素、という順に生成する。スーパーオキシドは酸素分子から生成される最初の還元体であり、他の活性酸素の前駆体であり、生体にとって重要な役割を持つ一酸化窒素と反応してその作用を消滅させる。活性酸素の中でもヒドロキシルラジカルはきわめて反応性が高いラジカルであり、活性酸素による多くの生体損傷はヒドロキシルラジカルによるものとされている吉川 1997 p.10。過酸化水素の反応性はそれほど高くなく、生体温度では安定しているが金属イオンや光により容易に分解してヒドロキシルラジカルを生成する吉川 1997 p.9。活性酸素は1 日に細胞あたり約10 億個発生し、これに対して生体の活性酸素消去能力(抗酸化機能)が働くものの活性酸素は細胞内のDNAを損傷し,平常の生活でもDNA 損傷の数は細胞あたり一日数万から数10 万個になるがこのDNA 損傷はすぐに修復される(DNA修復)。.

スーパーオキシドディスムターゼと活性酸素 · 活性酸素と過酸化水素 · 続きを見る »

上記のリストは以下の質問に答えます

スーパーオキシドディスムターゼと過酸化水素の間の比較

過酸化水素が148を有しているスーパーオキシドディスムターゼは、42の関係を有しています。 彼らは一般的な15で持っているように、ジャカード指数は7.89%です = 15 / (42 + 148)。

参考文献

この記事では、スーパーオキシドディスムターゼと過酸化水素との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »