ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ゲートターンオフサイリスタと電極

ショートカット: 違い類似点ジャカード類似性係数参考文献

ゲートターンオフサイリスタと電極の違い

ゲートターンオフサイリスタ vs. 電極

GTOの回路図記号 ゲートターンオフサイリスタ(Gate Turn-Off thyristor:GTO)は、自己消弧素子の一種で、ゲートに逆方向の電流を流すことにより、ターンオフできる機能をもつサイリスタである。. 電極(でんきょく)とは、受動素子、真空管や半導体素子のような能動素子、電気分解の装置、電池などにおいて、その対象物を働かせる、あるいは電気信号を測定するなどの目的で、電気的に接続する部分のことである。 また、トランジスタのベース、FETのゲートなど、ある電極から別の電極への電荷の移動を制御するための電極もある。.

ゲートターンオフサイリスタと電極間の類似点

ゲートターンオフサイリスタと電極は(ユニオンペディアに)共通で6ものを持っています: トランジスタダイオードアノードカソードコンデンサ電流

トランジスタ

1947年12月23日に発明された最初のトランジスタ(複製品) パッケージのトランジスタ トランジスタ(transistor)は、増幅、またはスイッチ動作をさせる半導体素子で、近代の電子工学における主力素子である。transfer(伝達)とresistor(抵抗)を組み合わせたかばん語である。によって1948年に名づけられた。「変化する抵抗を通じての信号変換器transfer of a signal through a varister または transit resistor」からの造語との説もある。 通称として「石」がある(真空管を「球」と通称したことに呼応する)。たとえばトランジスタラジオなどでは、使用しているトランジスタの数を数えて、6石ラジオ(6つのトランジスタを使ったラジオ)のように言う場合がある。 デジタル回路ではトランジスタが電子的なスイッチとして使われ、半導体メモリ・マイクロプロセッサ・その他の論理回路で利用されている。ただ、集積回路の普及に伴い、単体のトランジスタがデジタル回路における論理素子として利用されることはほとんどなくなった。一方、アナログ回路中では、トランジスタは基本的に増幅器として使われている。 トランジスタは、ゲルマニウムまたはシリコンの結晶を利用して作られることが一般的である。そのほか、ヒ化ガリウム (GaAs) などの化合物を材料としたものは化合物半導体トランジスタと呼ばれ、特に超高周波用デバイスとして広く利用されている(衛星放送チューナーなど)。.

ゲートターンオフサイリスタとトランジスタ · トランジスタと電極 · 続きを見る »

ダイオード

図1:ダイオードの拡大図正方形を形成しているのが半導体の結晶を示す 図2:様々な半導体ダイオード。下部:ブリッジダイオード 図3:真空管ダイオードの構造 図4 ダイオード(英: diode)は整流作用(電流を一定方向にしか流さない作用)を持つ電子素子である。最初のダイオードは2極真空管で、後に半導体素子である半導体ダイオードが開発された。今日では単にダイオードと言えば、通常、半導体ダイオードを指す。 1919年、イギリスの物理学者 William Henry Eccles がギリシア語の di.

ゲートターンオフサイリスタとダイオード · ダイオードと電極 · 続きを見る »

アノード

アノード (Anode) とは、外部回路から電流が流れ込む電極のこと。外部回路へ電子が流れ出す電極とも言える。 電気分解や電池においては、アノードは電気化学的に酸化が起こる電極である。真空管では構造上プレートと呼ばれることが多い。 アノードという語はマイケル・ファラデーにより命名され、ギリシア語で上り口を意味するAnodosに由来する。 アノードと逆の電極はカソードである。アノードとカソードの区別は、電流(電子)の向きによって決まるのであり、電位の高低によらないことに注意を要する。陽極と陰極の区別は電位の高低によるとする流儀(電圧の方向による区別)と、アノード・カソードの直訳とする流儀(電流の方向による区別)があり、用語として混乱している。正極・負極という用語は、電位の高い側・低い側という意味で定着しているので、電位の高い低いの区別には正極・負極を、電流の向きの区別にはアノード・カソードを用いるのが望ましい。 正極・負極で表現すると、アノードは、真空管や電気分解では正極、電池の場合は負極である。.

アノードとゲートターンオフサイリスタ · アノードと電極 · 続きを見る »

カソード

ード(Cathode、Kathode)は、外部回路へ電流が流れ出す電極のこと。外部回路から電子が流れ込む電極とも言える。 電気分解や電池においては、カソードは電気化学的に還元が起こる電極である。 カソードという語はマイケル・ファラデーにより命名され、ギリシア語で下り口を意味するCathodosに由来する。 カソードと逆の電極はアノードである。カソードとアノードの区別は、電流(電子)の向きによって決まるのであり、電位の高低によらないことに注意を要する。.

カソードとゲートターンオフサイリスタ · カソードと電極 · 続きを見る »

コンデンサ

ンデンサの形状例。この写真の中での分類としては、足のあるものが「リード形」、長方体のものが「チップ形」である 典型的なリード形電解コンデンサ コンデンサ(Kondensator、capacitor)とは、電荷(静電エネルギー)を蓄えたり、放出したりする受動素子である。キャパシタとも呼ばれる。(日本の)漢語では蓄電器(ちくでんき)などとも。 この素子のスペックの値としては、基本的な値は静電容量である。その他の特性としては印加できる電圧(耐圧)、理想的な特性からどの程度外れているかを示す、等価回路における、直列の誘導性を示す値と直列並列それぞれの抵抗値などがある。一般に国際単位系(SI)における静電容量の単位であるファラド(記号: F)で表すが、一般的な程度の容量としてはそのままのファラドは過大であり、マイクロファラド(μF.

ゲートターンオフサイリスタとコンデンサ · コンデンサと電極 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

ゲートターンオフサイリスタと電流 · 電極と電流 · 続きを見る »

上記のリストは以下の質問に答えます

ゲートターンオフサイリスタと電極の間の比較

電極が25を有しているゲートターンオフサイリスタは、24の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は12.24%です = 6 / (24 + 25)。

参考文献

この記事では、ゲートターンオフサイリスタと電極との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »